Title: | Earth Observation Data Cubes from Satellite Image Collections |
---|---|
Description: | Processing collections of Earth observation images as on-demand multispectral, multitemporal raster data cubes. Users define cubes by spatiotemporal extent, resolution, and spatial reference system and let 'gdalcubes' automatically apply cropping, reprojection, and resampling using the 'Geospatial Data Abstraction Library' ('GDAL'). Implemented functions on data cubes include reduction over space and time, applying arithmetic expressions on pixel band values, moving window aggregates over time, filtering by space, time, bands, and predicates on pixel values, exporting data cubes as 'netCDF' or 'GeoTIFF' files, plotting, and extraction from spatial and or spatiotemporal features. All computational parts are implemented in C++, linking to the 'GDAL', 'netCDF', 'CURL', and 'SQLite' libraries. See Appel and Pebesma (2019) <doi:10.3390/data4030092> for further details. |
Authors: | Marius Appel [aut, cre] , Edzer Pebesma [ctb] , Roger Bivand [ctb], Jeroen Ooms [ctb] , Lewis Van Winkle [cph], Ole Christian Eidheim [cph], Howard Hinnant [cph], Adrian Colomitchi [cph], Florian Dang [cph], Paul Thompson [cph], Tomasz KamiĆski [cph], Dropbox, Inc. [cph] |
Maintainer: | Marius Appel <[email protected]> |
License: | MIT + file LICENSE |
Version: | 0.7.0 |
Built: | 2024-11-02 05:16:31 UTC |
Source: | https://github.com/appelmar/gdalcubes |
Copy a data cube proxy object without copying any data
.copy_cube(cube)
.copy_cube(cube)
cube |
source data cube proxy object |
This internal function copies the complete processing chain / graph of a data cube but does not copy any data It is used internally to avoid in-place modification for operations with potential side effects on source data cubes.
copied data cube proxy object
Download and install an image collection format from a URL
add_collection_format(url, name = NULL)
add_collection_format(url, name = NULL)
url |
URL pointing to the collection format JSON file |
name |
optional name used to refer to the collection format |
By default, the collection format name will be derived from the basename of the URL.
add_collection_format( "https://raw.githubusercontent.com/appelmar/gdalcubes_cpp/dev/formats/Sentinel1_IW_GRD.json")
add_collection_format( "https://raw.githubusercontent.com/appelmar/gdalcubes_cpp/dev/formats/Sentinel1_IW_GRD.json")
This function adds provided files or GDAL dataset identifiers and to an existing image collection by extracting datetime, image identifiers, and band information according to the collection's format.
add_images( image_collection, files, unroll_archives = TRUE, out_file = "", quiet = FALSE )
add_images( image_collection, files, unroll_archives = TRUE, out_file = "", quiet = FALSE )
image_collection |
image_collection object or path to an existing collection file |
files |
character vector with paths to image files on disk or any GDAL dataset identifiers (including virtual file systems and higher level drivers or GDAL subdatasets) |
unroll_archives |
automatically convert .zip, .tar archives and .gz compressed files to GDAL virtual file system dataset identifiers (e.g. by prepending /vsizip/) and add contained files to the list of considered files |
out_file |
path to output file, an empty string (the default) will update the collection in-place, whereas images will be added to a new copy of the image collection at the given location otherwise. |
quiet |
logical; if TRUE, do not print resulting image collection if return value is not assigned to a variable |
image collection proxy object, which can be used to create a data cube using raster_cube
L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) L8_col = create_image_collection(L8_files[1:12], "L8_L1TP") add_images(L8_col, L8_files[13:24])
L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) L8_col = create_image_collection(L8_files[1:12], "L8_L1TP") add_images(L8_col, L8_files[13:24])
Create a proxy data cube, which applies an aggregation function to reduce the spatial resolution.
aggregate_space(cube, dx, dy, method = "mean", fact = NULL)
aggregate_space(cube, dx, dy, method = "mean", fact = NULL)
cube |
source data cube |
dx |
numeric value; new spatial resolution in x direction |
dy |
numeric value; new spatial resolution in y direction |
method |
aggregation method, one of "mean", "min", "max", "median", "count", "sum", "prod", "var", and "sd" |
fact |
simple integer factor defining how many cells (per axis) become aggregated to a single new cell, can be used instead of dx and dy |
This function reduces the spatial resolution of a data cube by applying an aggregation function to smaller blocks of pixels.
The size of the cube may be expanded automatically in all directions if the original extent is not divisible by the new size of pixels.
Notice that if boundaries of the target cube do not align with the boundaries of the input cube (for example, if aggregating from 10m to 15m spatial resolution), pixels of the input cube will contribute to the output pixel that contains its center coordinate. If the center coordinate is exactly on a boundary, the input pixel will contribute to the right / bottom pixel of the output cube.
This function returns a proxy object, i.e., it will not start any computations besides deriving the shape of the result.
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"), srs="EPSG:32618", dx = 500, dy=500, dt="P3M", aggregation = "median") L8.cube = raster_cube(L8.col, v, mask=image_mask("BQA", bits=4, values=16)) L8.rgb = select_bands(L8.cube, c("B02", "B03", "B04")) L8.5km = aggregate_space(L8.rgb, 5000,5000, "mean") L8.5km plot(L8.5km, rgb=3:1, zlim=c(5000,12000))
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"), srs="EPSG:32618", dx = 500, dy=500, dt="P3M", aggregation = "median") L8.cube = raster_cube(L8.col, v, mask=image_mask("BQA", bits=4, values=16)) L8.rgb = select_bands(L8.cube, c("B02", "B03", "B04")) L8.5km = aggregate_space(L8.rgb, 5000,5000, "mean") L8.5km plot(L8.5km, rgb=3:1, zlim=c(5000,12000))
Create a proxy data cube, which applies an aggregation function over pixel time series to lower temporal resolution.
aggregate_time(cube, dt, method = "mean", fact = NULL)
aggregate_time(cube, dt, method = "mean", fact = NULL)
cube |
source data cube |
dt |
character; new temporal resolution, datetime period string, e.g. "P1M" |
method |
aggregation method, one of "mean", "min", "max", "median", "count", "sum", "prod", "var", and "sd" |
fact |
simple integer factor defining how many cells become aggregated to a single new cell, can be used instead of dt |
This function can be used to aggregate time series to lower resolution or to regularize a data cube with irregular (labeled) time axis. It is possible to change the unit of the temporal resolution (e.g. to create monthly composites from daily images). The size of the cube may be expanded automatically if the original temporal extent is not divisible by the new temporal size of pixels.
This function returns a proxy object, i.e., it will not start any computations besides deriving the shape of the result.
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"), srs="EPSG:32618", nx = 497, ny=526, dt="P3M", aggregation = "median") L8.cube = raster_cube(L8.col, v, mask=image_mask("BQA", bits=4, values=16)) L8.rgb = select_bands(L8.cube, c("B02", "B03", "B04")) L8.two_monthly = aggregate_time(L8.rgb, "P6M", "min") L8.two_monthly plot(L8.two_monthly, rgb=3:1, zlim=c(5000,12000))
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"), srs="EPSG:32618", nx = 497, ny=526, dt="P3M", aggregation = "median") L8.cube = raster_cube(L8.col, v, mask=image_mask("BQA", bits=4, values=16)) L8.rgb = select_bands(L8.cube, c("B02", "B03", "B04")) L8.two_monthly = aggregate_time(L8.rgb, "P6M", "min") L8.two_monthly plot(L8.two_monthly, rgb=3:1, zlim=c(5000,12000))
This function can animate data cube time series as mp4 videos or animated GIFs.
Depending on the desired output format, either the av
or the gifski
package is needed to create mp4 and GIF animations respectively.
animate( x, ..., fps = 1, loop = TRUE, width = 800, height = 800, save_as = tempfile(fileext = ".gif"), preview = interactive() )
animate( x, ..., fps = 1, loop = TRUE, width = 800, height = 800, save_as = tempfile(fileext = ".gif"), preview = interactive() )
x |
a data cube proxy object (class cube) |
... |
parameters passed to plot.cube |
fps |
frames per second of the animation |
loop |
how many iterations, TRUE = infinite |
width |
width (in pixels) of the animation |
height |
height (in pixels) of the animation |
save_as |
character path where the animation shall be stored, must end with ".mp4" or ".gif" |
preview |
logical; preview the animation |
Animations can be created for single band data cubes or RGB plots of multi-band data cubes (by providing the argument rgb) only.
character; path pointing to the the created file
if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P16D") animate(select_bands(raster_cube(L8.col, v), c("B02", "B03", "B04")), rgb=3:1, zlim=c(0,20000), fps=1, loop=1) animate(select_bands(raster_cube(L8.col, v), c("B05")), col=terrain.colors, key.pos=1)
if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P16D") animate(select_bands(raster_cube(L8.col, v), c("B02", "B03", "B04")), rgb=3:1, zlim=c(0,20000), fps=1, loop=1) animate(select_bands(raster_cube(L8.col, v), c("B05")), col=terrain.colors, key.pos=1)
This generic function applies a function on pixels of a data cube, an R array, or other classes if implemented.
apply_pixel(x, ...)
apply_pixel(x, ...)
x |
input data |
... |
additional arguments passed to method implementations |
return value and type depend on the class of x
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") L8.col = image_collection(file.path(tempdir(), "L8.db")) apply_pixel(raster_cube(L8.col, v), "(B05-B04)/(B05+B04)", "NDVI") d <- c(4,16,128,128) x <- array(rnorm(prod(d)), d) y <- apply_pixel(x, function(v) { v[1] + v[2] + v[3] - v[4] })
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") L8.col = image_collection(file.path(tempdir(), "L8.db")) apply_pixel(raster_cube(L8.col, v), "(B05-B04)/(B05+B04)", "NDVI") d <- c(4,16,128,128) x <- array(rnorm(prod(d)), d) y <- apply_pixel(x, function(v) { v[1] + v[2] + v[3] - v[4] })
Apply a function over pixels in a four-dimensional (band, time, y, x) array
## S3 method for class 'array' apply_pixel(x, FUN, ...)
## S3 method for class 'array' apply_pixel(x, FUN, ...)
x |
four-dimensional input array with dimensions band, time, y, x (in this order) |
FUN |
function that receives a vector of band values in a one-dimensional array |
... |
further arguments passed to FUN |
FUN is expected to produce a numeric vector (or scalar) where elements are interpreted as new bands in the result.
This is a helper function that uses the same dimension ordering as gdalcubes. It can be used to simplify the application of R functions e.g. over time series in a data cube.
d <- c(4,16,32,32) x <- array(rnorm(prod(d)), d) y <- apply_pixel(x, function(v) { v[1] + v[2] + v[3] - v[4] }) dim(y)
d <- c(4,16,32,32) x <- array(rnorm(prod(d)), d) y <- apply_pixel(x, function(v) { v[1] + v[2] + v[3] - v[4] }) dim(y)
Create a proxy data cube, which applies arithmetic expressions over all pixels of a data cube. Expressions may access band values by name.
## S3 method for class 'cube' apply_pixel( x, expr, names = NULL, keep_bands = FALSE, ..., FUN, load_pkgs = FALSE, load_env = FALSE )
## S3 method for class 'cube' apply_pixel( x, expr, names = NULL, keep_bands = FALSE, ..., FUN, load_pkgs = FALSE, load_env = FALSE )
x |
source data cube |
expr |
character vector with one or more arithmetic expressions (see Details) |
names |
optional character vector with the same length as expr to specify band names for the output cube |
keep_bands |
logical; keep bands of input data cube, defaults to FALSE, i.e. original bands will be dropped |
... |
not used |
FUN |
user-defined R function that is applied on all pixels (see Details) |
load_pkgs |
logical or character; if TRUE, all currently attached packages will be attached automatically before executing FUN in spawned R processes, specific packages can alternatively be provided as a character vector. |
load_env |
logical or environment; if TRUE, the current global environment will be restored automatically before executing FUN in spawned R processes, can be set to a custom environment. |
The function can either apply simple arithmetic C expressions given as a character vector (expr argument), or apply a custom R reducer function if FUN is provided.
In the former case, gdalcubes uses the tinyexpr library to evaluate expressions in C / C++, you can look at the library documentation
to see what kind of expressions you can execute. Pixel band values can be accessed by name. Predefined variables that can be used within the expression include integer pixel indexes (ix
, iy
, it
), and
pixel coordinates (left
, right
, top
, bottom
), t0
, t1
), where the last two values are provided seconds since epoch time.
FUN receives values of the bands from one pixel as a (named) vector and should return a numeric vector with identical length for all pixels. Elements of the
result vectors will be interpreted as bands in the result data cube. Notice that by default, since FUN is executed in a separate
R process, it cannot access any variables from outside and required packages must be loaded within FUN. To restore the current environment and
automatically load packages, set load_env
and/or load_pkgs
to TRUE
.
For more details and examples on how to write user-defined functions, please refer to the gdalcubes website at https://gdalcubes.github.io/source/concepts/udfs.html.
a proxy data cube object
This function returns a proxy object, i.e., it will not start any computations besides deriving the shape of the result.
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } # 1. Apply a C expression L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") L8.cube = raster_cube(L8.col, v) L8.cube = select_bands(L8.cube, c("B04", "B05")) L8.ndvi = apply_pixel(L8.cube, "(B05-B04)/(B05+B04)", "NDVI") L8.ndvi plot(L8.ndvi) # 2. Apply a user defined R function L8.ndvi.noisy = apply_pixel(L8.cube, names="NDVI_noisy", FUN=function(x) { rnorm(1, 0, 0.1) + (x["B05"]-x["B04"])/(x["B05"]+x["B04"]) }) L8.ndvi.noisy plot(L8.ndvi.noisy)
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } # 1. Apply a C expression L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") L8.cube = raster_cube(L8.col, v) L8.cube = select_bands(L8.cube, c("B04", "B05")) L8.ndvi = apply_pixel(L8.cube, "(B05-B04)/(B05+B04)", "NDVI") L8.ndvi plot(L8.ndvi) # 2. Apply a user defined R function L8.ndvi.noisy = apply_pixel(L8.cube, names="NDVI_noisy", FUN=function(x) { rnorm(1, 0, 0.1) + (x["B05"]-x["B04"])/(x["B05"]+x["B04"]) }) L8.ndvi.noisy plot(L8.ndvi.noisy)
This generic function applies a function on pixel time series of a data cube, an R array, or other classes if implemented. The resulting object is expected to have the same spatial and temporal shape as the input, i.e., no reduction is performed.
apply_time(x, ...)
apply_time(x, ...)
x |
input data |
... |
additional arguments passed to method implementations |
return value and type depend on the class of x
# 1. input is data cube # create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") L8.cube = raster_cube(L8.col, v) L8.cube = select_bands(L8.cube, c("B04", "B05")) L8.ndvi = apply_pixel(L8.cube, "(B05-B04)/(B05+B04)", "NDVI") # Apply a user defined R function apply_time(L8.ndvi, names="NDVI_residuals", FUN=function(x) { y = x["NDVI",] if (sum(is.finite(y)) < 3) { return(rep(NA,ncol(x))) } t = 1:ncol(x) return(predict(lm(y ~ t)) - x["NDVI",])}) # 2. input is array d <- c(4,16,32,32) x <- array(rnorm(prod(d)), d) z <- apply_time(x, function(v) { y = matrix(NA, ncol=ncol(v), nrow=2) y[1,] = (v[1,] + v[2,]) / 2 y[2,] = (v[3,] + v[4,]) / 2 y }) dim(z)
# 1. input is data cube # create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") L8.cube = raster_cube(L8.col, v) L8.cube = select_bands(L8.cube, c("B04", "B05")) L8.ndvi = apply_pixel(L8.cube, "(B05-B04)/(B05+B04)", "NDVI") # Apply a user defined R function apply_time(L8.ndvi, names="NDVI_residuals", FUN=function(x) { y = x["NDVI",] if (sum(is.finite(y)) < 3) { return(rep(NA,ncol(x))) } t = 1:ncol(x) return(predict(lm(y ~ t)) - x["NDVI",])}) # 2. input is array d <- c(4,16,32,32) x <- array(rnorm(prod(d)), d) z <- apply_time(x, function(v) { y = matrix(NA, ncol=ncol(v), nrow=2) y[1,] = (v[1,] + v[2,]) / 2 y[2,] = (v[3,] + v[4,]) / 2 y }) dim(z)
Apply a function over pixel time series in a four-dimensional (band, time, y, x) array
## S3 method for class 'array' apply_time(x, FUN, ...)
## S3 method for class 'array' apply_time(x, FUN, ...)
x |
four-dimensional input array with dimensions band, time, y, x (in this order) |
FUN |
function that receives a vector of band values in a one-dimensional array |
... |
further arguments passed to FUN |
FUN is expected to produce a matrix (or vector if result has only one band) where rows are interpreted as new bands and columns represent time.
This is a helper function that uses the same dimension ordering as gdalcubes. It can be used to simplify the application of R functions e.g. over time series in a data cube.
d <- c(4,16,32,32) x <- array(rnorm(prod(d)), d) z <- apply_time(x, function(v) { y = matrix(NA, ncol=ncol(v), nrow=2) y[1,] = (v[1,] + v[2,]) / 2 y[2,] = (v[3,] + v[4,]) / 2 y }) dim(z)
d <- c(4,16,32,32) x <- array(rnorm(prod(d)), d) z <- apply_time(x, function(v) { y = matrix(NA, ncol=ncol(v), nrow=2) y[1,] = (v[1,] + v[2,]) / 2 y[2,] = (v[3,] + v[4,]) / 2 y }) dim(z)
Create a proxy data cube, which applies a user-defined R function over all pixel time series of a data cube.
In contrast to reduce_time
, the time dimension is not reduced, i.e., resulting time series
must have identical length as the input data cube but may contain a different number of bands / variables.
Example uses of this function may include time series decompositions, cumulative sums / products, smoothing, sophisticated
NA filling, or similar.
## S3 method for class 'cube' apply_time( x, names = NULL, keep_bands = FALSE, FUN, load_pkgs = FALSE, load_env = FALSE, ... )
## S3 method for class 'cube' apply_time( x, names = NULL, keep_bands = FALSE, FUN, load_pkgs = FALSE, load_env = FALSE, ... )
x |
source data cube |
names |
optional character vector to specify band names for the output cube |
keep_bands |
logical; keep bands of input data cube, defaults to FALSE, i.e., original bands will be dropped |
FUN |
user-defined R function that is applied on all pixel time series (see Details) |
load_pkgs |
logical or character; if TRUE, all currently attached packages will be attached automatically before executing FUN in spawned R processes, specific packages can alternatively be provided as a character vector. |
load_env |
logical or environment; if TRUE, the current global environment will be restored automatically before executing FUN in spawned R processes, can be set to a custom environment. |
... |
not used |
FUN receives a single (multi-band) pixel time series as a matrix with rows corresponding to bands and columns corresponding to time. In general, the function must return a matrix with the same number of columns. If the result contains only a single band, it may alternatively return a vector with length identical to the length of the input time series (number of columns of the input).
For more details and examples on how to write user-defined functions, please refer to the gdalcubes website at https://gdalcubes.github.io/source/concepts/udfs.html.
a proxy data cube object
This function returns a proxy object, i.e., it will not start any computations besides deriving the shape of the result.
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") L8.cube = raster_cube(L8.col, v) L8.cube = select_bands(L8.cube, c("B04", "B05")) L8.ndvi = apply_pixel(L8.cube, "(B05-B04)/(B05+B04)", "NDVI") # Apply a user defined R function L8.ndvi.resid = apply_time(L8.ndvi, names="NDVI_residuals", FUN=function(x) { y = x["NDVI",] if (sum(is.finite(y)) < 3) { return(rep(NA,ncol(x))) } t = 1:ncol(x) return(predict(lm(y ~ t)) - x["NDVI",]) }) L8.ndvi.resid plot(L8.ndvi.resid)
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") L8.cube = raster_cube(L8.col, v) L8.cube = select_bands(L8.cube, c("B04", "B05")) L8.ndvi = apply_pixel(L8.cube, "(B05-B04)/(B05+B04)", "NDVI") # Apply a user defined R function L8.ndvi.resid = apply_time(L8.ndvi, names="NDVI_residuals", FUN=function(x) { y = x["NDVI",] if (sum(is.finite(y)) < 3) { return(rep(NA,ncol(x))) } t = 1:ncol(x) return(predict(lm(y ~ t)) - x["NDVI",]) }) L8.ndvi.resid plot(L8.ndvi.resid)
Convert a data cube to an in-memory R array
as_array(x)
as_array(x)
x |
data cube |
Four dimensional array with dimensions band, t, y, x
Depending on the data cube size, this function may require substantial amounts of main memory, i.e. it makes sense for small data cubes only.
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-05"), srs="EPSG:32618", nx = 100, ny=100, dt="P1M") x = as_array(select_bands(raster_cube(L8.col, v), c("B04", "B05"))) dim(x) dimnames(x)
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-05"), srs="EPSG:32618", nx = 100, ny=100, dt="P1M") x = as_array(select_bands(raster_cube(L8.col, v), c("B04", "B05"))) dim(x) dimnames(x)
gdalcubes internally uses a graph to serialize data cubes (including chained operations on cubes). This function derives a JSON representation, which can be used to save data cube objects without pixel data to disk.
as_json(obj, file = NULL)
as_json(obj, file = NULL)
obj |
a data cube proxy object (class cube) |
file |
optional output file |
If file is NULL, the function returns a JSON string representing a graph that can be used to recreate the same chain of gdalcubes operations even in a different R sessions.
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-04"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") cat(as_json(select_bands(raster_cube(L8.col, v), c("B04", "B05"))))
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-04"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") cat(as_json(select_bands(raster_cube(L8.col, v), c("B04", "B05"))))
Convert a data cube to a data.frame
## S3 method for class 'cube' as.data.frame(x, ..., complete_only = FALSE)
## S3 method for class 'cube' as.data.frame(x, ..., complete_only = FALSE)
x |
data cube object |
... |
not used |
complete_only |
logical; if TRUE, remove rows with one or more missing values |
A data.frame with bands / variables of the cube as columns and pixels as rows
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-05"), srs="EPSG:32618", nx = 100, ny=100, dt="P1M") x = select_bands(raster_cube(L8.col, v), c("B04", "B05")) df = as.data.frame(x, complete_only = TRUE) head(df)
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-05"), srs="EPSG:32618", nx = 100, ny=100, dt="P1M") x = select_bands(raster_cube(L8.col, v), c("B04", "B05")) df = as.data.frame(x, complete_only = TRUE) head(df)
Query data cube properties
bands(obj)
bands(obj)
obj |
a data cube proxy object (class cube) |
A data.frame with rows representing the bands and columns representing properties of a band (name, type, scale, offset, unit)
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") bands(raster_cube(L8.col, v))
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") bands(raster_cube(L8.col, v))
Apply an R function on chunks of a data cube
chunk_apply(cube, f)
chunk_apply(cube, f)
cube |
source data cube |
f |
R function to apply over all chunks |
This function internally creates a gdalcubes stream data cube, which streams
data of a chunk to a new R process. For reading data, the function typically
calls x <- read_chunk_as_array()
which then results in a 4 dimensional (band, time, y, x) array.
Similarly write_chunk_from_array(x)
will write a result array as a chunk in the resulting data cube.
The chunk size of the input cube is important to control how the function will be exposed to the data cube. For example,
if you want to apply an R function over complete pixel time series, you must define the chunk size argument in raster_cube
to make sure that chunk contain the correct parts of the data.
a proxy data cube object
This function returns a proxy object, i.e., it will not start any computations besides deriving the shape of the result.
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") L8.cube = raster_cube(L8.col, v) L8.cube = select_bands(L8.cube, c("B04", "B05")) f <- function() { x <- read_chunk_as_array() out <- reduce_time(x, function(x) { cor(x[1,], x[2,], use="na.or.complete", method = "kendall") }) write_chunk_from_array(out) } L8.cor = chunk_apply(L8.cube, f)
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") L8.cube = raster_cube(L8.col, v) L8.cube = select_bands(L8.cube, c("B04", "B05")) f <- function() { x <- read_chunk_as_array() out <- reduce_time(x, function(x) { cor(x[1,], x[2,], use="na.or.complete", method = "kendall") }) write_chunk_from_array(out) } L8.cor = chunk_apply(L8.cube, f)
gdalcubes comes with some predefined collection formats e.g. to scan Sentinel 2 data. This function lists available formats including brief descriptions.
collection_formats(print = TRUE)
collection_formats(print = TRUE)
print |
logical; should available formats and their descriptions be printed nicely, defaults to TRUE |
Image collection formats define how individual files / GDAL datasets relate to an image collection, i.e., which bands they contain, to which image they belong, and how to derive aquisition date/time. They are described as a set of regular expressions in a JSON file and used by gdalcubes to extract this information from the paths and/or filenames.
data.frame with columns name
and description
where the former describes the unique identifier that can be used in create_image_collection
and the
latter gives a brief description of the format.
collection_formats()
collection_formats()
This function iterates over files or GDAL dataset identifiers and extracts datetime, image identifiers, and band information according to a given collection format.
create_image_collection( files, format = NULL, out_file = tempfile(fileext = ".sqlite"), date_time = NULL, band_names = NULL, use_subdatasets = FALSE, unroll_archives = TRUE, quiet = FALSE, one_band_per_file = NULL )
create_image_collection( files, format = NULL, out_file = tempfile(fileext = ".sqlite"), date_time = NULL, band_names = NULL, use_subdatasets = FALSE, unroll_archives = TRUE, quiet = FALSE, one_band_per_file = NULL )
files |
character vector with paths to image files on disk or any GDAL dataset identifiers (including virtual file systems and higher level drivers or GDAL subdatasets) |
format |
collection format, can be either a name to use predefined formats (as output from |
out_file |
optional name of the output SQLite database file, defaults to a temporary file |
date_time |
vector with date/ time for files; can be of class character, Date, or POSIXct (argument is only applicable for image collections without collection format) |
band_names |
character vector with band names, length must match the number of bands in provided files (argument is only applicable for image collections without collection format) |
use_subdatasets |
logical; use GDAL subdatasets of provided files (argument is only applicable for image collections without collection format) |
unroll_archives |
automatically convert .zip, .tar archives and .gz compressed files to GDAL virtual file system dataset identifiers (e.g. by prepending /vsizip/) and add contained files to the list of considered files |
quiet |
logical; if TRUE, do not print resulting image collection if return value is not assigned to a variable |
one_band_per_file |
logical; if TRUE, assume that band_names are given for all files (argument is only applicable for image collections without collection format, see Details) |
An image collection is a simple index (a SQLite database) containing references to existing image files / GDAL dataset identifiers.
Collections can be created in two different ways: First, if a collection format is specified (argument format
), date/time, bands,
and metadata are automatically extracted from provided files. This is the most general approach but requires a collection format for
the specific dataset.
Second, image collections can sometimes be created without collection format by manually specifying date/time of images
(argument date_time
) and names of bands (argument band_names
). This is possible if either each image file contains all
bands of the collection or only a single band. In the former case band_names
simply contains the names of the bands or can be NULL
to use default names. In the latter case (image files contain a single band only), the lengths of band_names
and date_time
must be identical.
By default, the function assumes one band per file if length(band_names) == length(files)
. In the unlikely situation that this is
not desired, it can be explicitly set using one_band_per_file
.
image collection proxy object, which can be used to create a data cube using raster_cube
# 1. create image collection using a collection format L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) x = create_image_collection(L8_files, "L8_L1TP") x # 2. create image collection without format for a single band L8_files_B4 <- list.files(system.file("L8NY18", package = "gdalcubes"), "_B4.TIF", recursive = TRUE, full.names = TRUE) d = as.Date(substr(basename(L8_files_B4), 18, 25), "%Y%m%d") y = create_image_collection(L8_files_B4, date_time = d, band_names = "B4") y # 3. create image collection without format for all bands d = as.Date(substr(basename(L8_files), 18, 25), "%Y%m%d") fname = basename(tools::file_path_sans_ext(L8_files)) b = substr(fname, 27, nchar(fname)) z = create_image_collection(L8_files, date_time = d, band_names = b) z
# 1. create image collection using a collection format L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) x = create_image_collection(L8_files, "L8_L1TP") x # 2. create image collection without format for a single band L8_files_B4 <- list.files(system.file("L8NY18", package = "gdalcubes"), "_B4.TIF", recursive = TRUE, full.names = TRUE) d = as.Date(substr(basename(L8_files_B4), 18, 25), "%Y%m%d") y = create_image_collection(L8_files_B4, date_time = d, band_names = "B4") y # 3. create image collection without format for all bands d = as.Date(substr(basename(L8_files), 18, 25), "%Y%m%d") fname = basename(tools::file_path_sans_ext(L8_files)) b = substr(fname, 27, nchar(fname)) z = create_image_collection(L8_files, date_time = d, band_names = b) z
Create a proxy data cube, which crops a data cube by a spatial and/or temporal extent.
crop(cube, extent = NULL, iextent = NULL, snap = "near")
crop(cube, extent = NULL, iextent = NULL, snap = "near")
cube |
source data cube |
extent |
list with numeric items left, right, top, bottom, and character items t0 and t1, or a subset thereof, see examples |
iextent |
list with length-two integer items named x, y, and t, defining the lower and upper boundaries as integer coordinates, see examples |
snap |
one of 'near', 'in', or 'out'; ignored if using |
The new extent can be specified by spatial coordinates and datetime values (using the extent
argument), or as zero-based integer indexes (using the iextent
argument).
In the former case, extent
expects a list with numeric items left, right, top, bottom, t0, and t1, or a subset thereof. In the latter case,
iextent
is expected as a list with length-two integer vectors x, y, and t as items, defining the lower and upper cell indexes per dimension.
Notice that it is possible to crop only selected boundaries (e.g., only the right boundary) as missing boundaries in the extent
or NA / NULL values in the iextent
arguments are considered as "no change".
It is, however, not possible to mix arguments extent
and iextent
.
If extent
is given, the snap
argument can be used to define what happens if the new boundary falls within a data cube cell.
This function returns a proxy object, i.e., it will not start any computations besides deriving the shape of the result.
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"), srs="EPSG:32618", nx = 497, ny=526, dt="P3M", aggregation = "median") L8.cube = raster_cube(L8.col, v, mask=image_mask("BQA", bits=4, values=16)) L8.rgb = select_bands(L8.cube, c("B02", "B03", "B04")) # crop by integer indexes L8.cropped = crop(L8.rgb, iextent = list(x=c(0,400), y=c(0,400), t=c(1,1))) # crop by spatiotemporal coordinates L8.cropped = crop(L8.rgb, extent = list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-06"), snap = "in") L8.cropped L8.cropped = crop(L8.rgb, extent = list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-06"), snap = "near") L8.cropped plot(L8.cropped, rgb = 3:1, zlim=c(5000,10000))
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"), srs="EPSG:32618", nx = 497, ny=526, dt="P3M", aggregation = "median") L8.cube = raster_cube(L8.col, v, mask=image_mask("BQA", bits=4, values=16)) L8.rgb = select_bands(L8.cube, c("B02", "B03", "B04")) # crop by integer indexes L8.cropped = crop(L8.rgb, iextent = list(x=c(0,400), y=c(0,400), t=c(1,1))) # crop by spatiotemporal coordinates L8.cropped = crop(L8.rgb, extent = list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-06"), snap = "in") L8.cropped L8.cropped = crop(L8.rgb, extent = list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-06"), snap = "near") L8.cropped plot(L8.cropped, rgb = 3:1, zlim=c(5000,10000))
Data cube views define the shape of a cube, i.e., the spatiotemporal extent, resolution, and spatial reference system (srs). They are used to access image collections as on-demand data cubes. The data cube will filter images based on the view's extent, read image data at the defined resolution, and warp / reproject images to the target srs automatically.
cube_view( view, extent, srs, nx, ny, nt, dx, dy, dt, aggregation, resampling, keep.asp = TRUE )
cube_view( view, extent, srs, nx, ny, nt, dx, dy, dt, aggregation, resampling, keep.asp = TRUE )
view |
if provided, update this cube_view object instead of creating a new data cube view where fields that are already set will be overwritten |
extent |
spatioptemporal extent as a list e.g. from |
srs |
target spatial reference system as a string; can be a proj4 definition, WKT, or in the form "EPSG:XXXX" |
nx |
number of pixels in x-direction (longitude / easting) |
ny |
number of pixels in y-direction (latitude / northing) |
nt |
number of pixels in t-direction |
dx |
size of pixels in x-direction (longitude / easting) |
dy |
size of pixels in y-direction (latitude / northing) |
dt |
size of pixels in time-direction, expressed as ISO8601 period string (only 1 number and unit is allowed) such as "P16D" |
aggregation |
aggregation method as string, defining how to deal with pixels containing data from multiple images, can be "min", "max", "mean", "median", or "first" |
resampling |
resampling method used in gdalwarp when images are read, can be "near", "bilinear", "bicubic" or others as supported by gdalwarp (see https://gdal.org/programs/gdalwarp.html) |
keep.asp |
if TRUE, derive ny or dy automatically from nx or dx (or vice versa) based on the aspect ratio of the spatial extent |
The extent
argument expects a simple list with elementes left
, right
, bottom
, top
, t0
(start date/time), t1
(end date/time) or an image collection object.
In the latter case, the extent
function is automatically called on the image collection object to get the full spatiotemporal extent of the collection. In the former case, datetimes
are expressed as ISO8601 datetime strings.
The function can be used in two different ways. First, it can create data cube views from scratch by defining the extent, the spatial reference system, and for each dimension either the cell size (dx, dy, dt) or the total number of cells (nx, ny, nt). Second, the function can update an existing data cube view by overwriting specific fields. In this case, the extent or some elements of the extent may be missing.
In some cases, the extent of the view is automatically extended if the provided resolution would end within a pixel. For example, if the spatial extent covers an area of 1km x 1km and dx = dy = 300m, the extent would be enlarged to 1.2 km x 1.2km. The alignment will be reported to the user in a diagnostic message.
A list with data cube view properties
L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) L8.col = create_image_collection(L8_files, "L8_L1TP") # 1. Create a new data cube view specification v = cube_view(extent=extent(L8.col,"EPSG:4326"), srs="EPSG:4326", dt="P1M", nx=1000, ny=500, aggregation = "mean", resampling="bilinear") v # 2. overwrite parts of an existing data cube view vnew = cube_view(v, dt="P1M")
L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) L8.col = create_image_collection(L8_files, "L8_L1TP") # 1. Create a new data cube view specification v = cube_view(extent=extent(L8.col,"EPSG:4326"), srs="EPSG:4326", dt="P1M", nx=1000, ny=500, aggregation = "mean", resampling="bilinear") v # 2. overwrite parts of an existing data cube view vnew = cube_view(v, dt="P1M")
Query data cube properties
## S3 method for class 'cube' dim(x)
## S3 method for class 'cube' dim(x)
x |
a data cube proxy object (class cube) |
size of a data cube (number of cells) as integer vector in the order t, y, x
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") dim(raster_cube(L8.col, v))
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") dim(raster_cube(L8.col, v))
Dimension values give the coordinates bounds the spatial and temporal axes of a data cube.
dimension_bounds(obj, datetime_unit = NULL)
dimension_bounds(obj, datetime_unit = NULL)
obj |
a data cube proxy (class cube) |
datetime_unit |
unit used to format values in the datetime dimension, one of "Y", "m", "d", "H", "M", "S", defaults to the unit of the cube. |
list with elements t,y,x, each a list with two elements, start and end
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") dimension_bounds(raster_cube(L8.col, v))
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") dimension_bounds(raster_cube(L8.col, v))
Dimension values give the coordinates along the spatial and temporal axes of a data cube.
dimension_values(obj, datetime_unit = NULL)
dimension_values(obj, datetime_unit = NULL)
obj |
a data cube proxy (class cube), or a data cube view object |
datetime_unit |
unit used to format values in the datetime dimension, one of "Y", "m", "d", "H", "M", "S", defaults to the unit of the cube. |
list with elements t,y,x
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") dimension_values(raster_cube(L8.col, v))
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") dimension_values(raster_cube(L8.col, v))
Query data cube properties
dimensions(obj)
dimensions(obj)
obj |
a data cube proxy object (class cube) |
Elements of the returned list represent individual dimensions with properties such as dimension boundaries, names, and chunk size stored as inner lists
Dimension information as a list
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") dimensions(raster_cube(L8.col, v))
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") dimensions(raster_cube(L8.col, v))
Derive the spatiotemporal extent of an image collection
extent(x, srs = "EPSG:4326")
extent(x, srs = "EPSG:4326")
x |
image collection proxy object |
srs |
target spatial reference system |
a list with elements left
, right
, bottom
, top
, t0
(start date/time), and t1
(end date/time)
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) extent(L8.col,"EPSG:32618") cube_view(extent=extent(L8.col,"EPSG:32618"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M")
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) extent(L8.col,"EPSG:32618") cube_view(extent=extent(L8.col,"EPSG:32618"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M")
Extract pixel values of a data cube from a set of spatial or spatiotemporal features. Applications include the extraction of full time series at irregular points, extraction from spatiotemporal points, extraction of pixel values in polygons, and computing summary statistics over polygons.
extract_geom( cube, sf, datetime = NULL, time_column = NULL, FUN = NULL, merge = FALSE, drop_geom = FALSE, ..., reduce_time = FALSE )
extract_geom( cube, sf, datetime = NULL, time_column = NULL, FUN = NULL, merge = FALSE, drop_geom = FALSE, ..., reduce_time = FALSE )
cube |
source data cube to extract values from |
sf |
object of class |
datetime |
Date, POSIXt, or character vector containing per feature time information; length must be identical to the number of features in |
time_column |
name of the column in |
FUN |
optional function to compute per feature summary statistics |
merge |
logical; return a combined data.frame with data cube values and labels, defaults to FALSE |
drop_geom |
logical; remove geometries from output, only used if merge is TRUE, defaults to FALSE |
... |
additional arguments passed to |
reduce_time |
logical; if TRUE, time is ignored when |
The geometry in sf
can be of any simple feature type supported by GDAL, including
POINTS, LINES, POLYGONS, MULTI*, and more. If no time information is provided
in one of the arguments datetime
or time_column
, the full time series
of pixels with regard to the features are returned.
Notice that feature identifiers in the FID
column typically correspond to the row names / numbers
of the provided sf object. This can be used to combine the output with the original geometries, e.g., using merge()
.
with gdalcubes > 0.6.4, this can be done automatically by setting merge=TRUE
. In this case, the FID
column is dropped from the result.
Pixels with missing values are automatically dropped from the result. It is hence not guaranteed that the result will contain rows for all input features.
Features are automatically reprojected if the coordinate reference system differs from the data cube.
Extracted values can be aggregated by features by providing a summary function.
If reduce_time
is FALSE (the default), the values are grouped
by feature and time, i.e., the result will contain unique combinations of FID and time.
To ignore time and produce a single value per feature, reduce_time
can be set to TRUE.
A data.frame with columns FID, time, and data cube bands / variables, see Details
# if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(srs="EPSG:32618", dy=1000, dx=1000, dt="P1M", aggregation = "median", resampling = "bilinear", extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01-01", t1="2018-04-30")) L8.cube = raster_cube(L8.col, v) L8.cube = select_bands(L8.cube, c("B04", "B05")) L8.ndvi = apply_pixel(L8.cube, "(B05-B04)/(B05+B04)", "NDVI") L8.ndvi if (gdalcubes_gdal_has_geos()) { if (requireNamespace("sf", quietly = TRUE)) { # create 50 random point locations x = runif(50, v$space$left, v$space$right) y = runif(50, v$space$bottom, v$space$top) t = sample(seq(as.Date("2018-01-01"),as.Date("2018-04-30"), by = 1),50, replace = TRUE) df = sf::st_as_sf(data.frame(x = x, y = y), coords = c("x", "y"), crs = v$space$srs) # 1. spatiotemporal points extract_geom(L8.ndvi, df, datetime = t) # 2. time series at spatial points extract_geom(L8.ndvi, df) # 3. summary statistics over polygons x = sf::st_read(system.file("nycd.gpkg", package = "gdalcubes")) zstats = extract_geom(L8.ndvi,x, FUN=median, reduce_time = TRUE, merge = TRUE) zstats plot(zstats["NDVI"]) } }
# if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(srs="EPSG:32618", dy=1000, dx=1000, dt="P1M", aggregation = "median", resampling = "bilinear", extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01-01", t1="2018-04-30")) L8.cube = raster_cube(L8.col, v) L8.cube = select_bands(L8.cube, c("B04", "B05")) L8.ndvi = apply_pixel(L8.cube, "(B05-B04)/(B05+B04)", "NDVI") L8.ndvi if (gdalcubes_gdal_has_geos()) { if (requireNamespace("sf", quietly = TRUE)) { # create 50 random point locations x = runif(50, v$space$left, v$space$right) y = runif(50, v$space$bottom, v$space$top) t = sample(seq(as.Date("2018-01-01"),as.Date("2018-04-30"), by = 1),50, replace = TRUE) df = sf::st_as_sf(data.frame(x = x, y = y), coords = c("x", "y"), crs = v$space$srs) # 1. spatiotemporal points extract_geom(L8.ndvi, df, datetime = t) # 2. time series at spatial points extract_geom(L8.ndvi, df) # 3. summary statistics over polygons x = sf::st_read(system.file("nycd.gpkg", package = "gdalcubes")) zstats = extract_geom(L8.ndvi,x, FUN=median, reduce_time = TRUE, merge = TRUE) zstats plot(zstats["NDVI"]) } }
Create a proxy data cube, which fills NA pixels of a data cube by nearest neighbor or linear time series interpolation.
fill_time(cube, method = "near")
fill_time(cube, method = "near")
cube |
source data cube |
method |
interpolation method, can be "near" (nearest neighbor), "linear" (linear interpolation), "locf" (last observation carried forward), or "nocb" (next observation carried backward) |
Please notice that completely empty (NA) time series will not be filled, i.e. the result cube might still contain NA values.
a proxy data cube object
This function returns a proxy object, i.e., it will not start any computations besides deriving the shape of the result.
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"), srs="EPSG:32618", nx = 497, ny=526, dt="P3M", aggregation = "median") L8.cube = raster_cube(L8.col, v, mask=image_mask("BQA", bits=4, values=16)) L8.rgb = select_bands(L8.cube, c("B02", "B03", "B04")) L8.filled = fill_time(L8.rgb, "linear") L8.filled plot(L8.filled, rgb=3:1, zlim=c(5000,12000))
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"), srs="EPSG:32618", nx = 497, ny=526, dt="P3M", aggregation = "median") L8.cube = raster_cube(L8.col, v, mask=image_mask("BQA", bits=4, values=16)) L8.rgb = select_bands(L8.cube, c("B02", "B03", "B04")) L8.filled = fill_time(L8.rgb, "linear") L8.filled plot(L8.filled, rgb=3:1, zlim=c(5000,12000))
Create a proxy data cube, which filters pixels by a spatial (multi)polygon For all pixels whose center is within the polygon, the original
filter_geom(cube, geom, srs = NULL)
filter_geom(cube, geom, srs = NULL)
cube |
source data cube |
geom |
either a WKT string, or an sfc or sfg object (sf package) |
srs |
string identifier of the polygon's coordinate reference system understandable for GDAL |
The resulting data cube will not be cropped but pixels outside of the polygon will be set to NAN.
If geom
is provided as an sfc object with length > 1, geometries will
be combined with sf::st_combine()
before.
The geometry is automatically transformed to the data cube's spatial reference system if needed.
a proxy data cube object
This function returns a proxy object, i.e., it will not start any computations besides deriving the shape of the result.
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") L8.cube = raster_cube(L8.col, v) L8.cube = select_bands(L8.cube, c("B04", "B05")) L8.ndvi = apply_pixel(L8.cube, "(B05-B04)/(B05+B04)", "NDVI") WKT = gsub(pattern='\\n',replacement="",x = "Polygon ((-74.3541 40.9254, -73.9813 41.2467, -73.9997 41.4400, -74.5362 41.1795, -74.6286 40.9137, -74.3541 40.9254))") L8.ndvi.filtered = filter_geom(L8.ndvi, WKT, "EPSG:4326") L8.ndvi.filtered plot(L8.ndvi.filtered)
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") L8.cube = raster_cube(L8.col, v) L8.cube = select_bands(L8.cube, c("B04", "B05")) L8.ndvi = apply_pixel(L8.cube, "(B05-B04)/(B05+B04)", "NDVI") WKT = gsub(pattern='\\n',replacement="",x = "Polygon ((-74.3541 40.9254, -73.9813 41.2467, -73.9997 41.4400, -74.5362 41.1795, -74.6286 40.9137, -74.3541 40.9254))") L8.ndvi.filtered = filter_geom(L8.ndvi, WKT, "EPSG:4326") L8.ndvi.filtered plot(L8.ndvi.filtered)
Create a proxy data cube, which evaluates a predicate over all pixels of a data cube. For all pixels that fulfill the predicate, the original band values are returned. Other pixels are simply filled with NANs. The predicate may access band values by name.
filter_pixel(cube, pred)
filter_pixel(cube, pred)
cube |
source data cube |
pred |
predicate to be evaluated over all pixels |
gdalcubes uses and extends the tinyexpr library to evaluate expressions in C / C++, you can look at the library documentation to see what kind of expressions you can execute. Pixel band values can be accessed by name.
a proxy data cube object
This function returns a proxy object, i.e., it will not start any computations besides deriving the shape of the result.
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") L8.cube = raster_cube(L8.col, v) L8.cube = select_bands(L8.cube, c("B04", "B05")) L8.ndvi = apply_pixel(L8.cube, "(B05-B04)/(B05+B04)", "NDVI") L8.ndvi.filtered = filter_pixel(L8.ndvi, "NDVI > 0.5") L8.ndvi.filtered plot(L8.ndvi.filtered)
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") L8.cube = raster_cube(L8.col, v) L8.cube = select_bands(L8.cube, c("B04", "B05")) L8.ndvi = apply_pixel(L8.cube, "(B05-B04)/(B05+B04)", "NDVI") L8.ndvi.filtered = filter_pixel(L8.ndvi, "NDVI > 0.5") L8.ndvi.filtered plot(L8.ndvi.filtered)
Processing collections of Earth observation images as on-demand multispectral, multitemporal raster data cubes. Users define cubes by spatiotemporal extent, resolution, and spatial reference system and let 'gdalcubes' automatically apply cropping, reprojection, and resampling using the 'Geospatial Data Abstraction Library' ('GDAL'). Implemented functions on data cubes include reduction over space and time, applying arithmetic expressions on pixel band values, moving window aggregates over time, filtering by space, time, bands, and predicates on pixel values, exporting data cubes as 'netCDF' or 'GeoTIFF' files, plotting, and extraction from spatial and or spatiotemporal features. All computational parts are implemented in C++, linking to the 'GDAL', 'netCDF', 'CURL', and 'SQLite' libraries. See Appel and Pebesma (2019) <doi:10.3390/data4030092> for further details.
Check if GDAL was built with GEOS
gdalcubes_gdal_has_geos()
gdalcubes_gdal_has_geos()
gdalcubes_gdal_has_geos()
gdalcubes_gdal_has_geos()
Get available GDAL drivers
gdalcubes_gdalformats()
gdalcubes_gdalformats()
gdalcubes_gdalformats()
gdalcubes_gdalformats()
Get the GDAL version used by gdalcubes
gdalcubes_gdalversion()
gdalcubes_gdalversion()
gdalcubes_gdalversion()
gdalcubes_gdalversion()
Set global package options to change the default behavior of gdalcubes. These include how many parallel processes are used to process data cubes, how created netCDF files are compressed, and whether or not debug messages should be printed.
gdalcubes_options( ..., parallel, ncdf_compression_level, debug, cache, ncdf_write_bounds, use_overview_images, show_progress, default_chunksize, streaming_dir, log_file, threads )
gdalcubes_options( ..., parallel, ncdf_compression_level, debug, cache, ncdf_write_bounds, use_overview_images, show_progress, default_chunksize, streaming_dir, log_file, threads )
... |
not used |
parallel |
number of parallel workers used to process data cubes or TRUE to use the number of available cores automatically |
ncdf_compression_level |
integer; compression level for created netCDF files, 0=no compression, 1=fast compression, 9=small compression |
debug |
logical; print debug messages |
cache |
logical; TRUE if temporary data cubes should be cached to support fast reprocessing of the same cubes |
ncdf_write_bounds |
logical; write dimension bounds as additional variables in netCDF files |
use_overview_images |
logical; if FALSE, all images are read on original resolution and existing overviews will be ignored |
show_progress |
logical; if TRUE, a progress bar will be shown for actual computations |
default_chunksize |
length-three vector with chunk size in t, y, x directions or a function taking a data cube size and returning a suggested chunk size |
streaming_dir |
directory where temporary binary files for process streaming will be written to |
log_file |
character, if empty string or NULL, diagnostic messages will be printed to the console, otherwise to the provided file |
threads |
number of threads used to process data cubes (deprecated) |
Data cubes can be processed in parallel where the number of chunks in a cube is distributed among parallel worker processes. The actual number of used workers can be lower if a data cube as less chunks. If parallel is TRUE, the number of available cores is used. Setting parallel = FALSE can be used to disable parallel processing. Notice that since version 0.6.0, separate processes are being used instead of parallel threads to avoid possible R session crashes due to some multithreading issues.
Caching has no effect on disk or memory consumption,
it simply tries to reuse existing temporary files where possible.
For example, changing only parameters to plot
will void
reprocessing the same data cube if cache is TRUE.
The streaming directory can be used to control the performance of user-defined functions, if disk IO is a bottleneck. Ideally, this can be set to a directory on a shared memory device.
Passing no arguments will return the current options as a list.
gdalcubes_options(parallel=4) # set the number gdalcubes_options() # print current options gdalcubes_options(parallel=FALSE) # reset
gdalcubes_options(parallel=4) # set the number gdalcubes_options() # print current options gdalcubes_options(parallel=FALSE) # reset
Subset data cube dimensions and bands / variables.
## S3 method for class 'cube' x$name ## S3 method for class 'cube' x[ib = TRUE, it = TRUE, iy = TRUE, ix = TRUE, ...]
## S3 method for class 'cube' x$name ## S3 method for class 'cube' x[ib = TRUE, it = TRUE, iy = TRUE, ix = TRUE, ...]
x |
source data cube |
name |
character; name of selected band |
ib |
first selector (optional), object of type character, list, Date, POSIXt, numeric, st_bbox, or st_sfc, see Details and examples |
it |
second selector (optional), see |
iy |
third selector (optional), see |
ix |
fourth selector (optional), see |
... |
further arguments, not used |
The []
operator allows for flexible subsetting of data cubes by date, datetime,
bounding box, spatial points, and band names. Depending on the arguments, it supports slicing
(selecting one element of a dimension), cropping (selecting a subinterval of a dimension) and combinations
thereof (e.g., selecting a spatial window and a temporal slice). Dimension subsets can
be specified by integer indexes or coordinates / datetime values. Arguments are matched by type and order.
For example, if the first argument is a length-two vector of type Date, the function will understand to
subset the time dimension. Otherwise, arguments are treated in the order band, time, y, x.
This function returns a proxy object, i.e., it will not start any computations besides deriving the shape of the result.
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"), srs="EPSG:32618", nx = 497, ny=526, dt="P3M", aggregation = "median") L8.cube = raster_cube(L8.col, v, mask=image_mask("BQA", bits=4, values=16)) L8.red = L8.cube$B04 plot(L8.red) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01-01", t1="2018-12-31"), srs="EPSG:32618", nx = 497, ny=526, dt="P1D", aggregation = "median") L8.cube = raster_cube(L8.col, v, mask=image_mask("BQA", bits=4, values=16)) L8.cube[c("B05","B04")] # select bands L8.cube[as.Date(c("2018-01-10", "2018-01-20"))] # crop by time L8.cube[as.Date("2018-01-10")] # slice by time L8.cube["B05", "2018-01-10"] # select bands and slice by time L8.cube["B05", c("2018-01-10","2018-01-17")] # select bands and crop by time L8.cube[, c("2018-01-10","2018-01-17")] # crop by time # crop by space (coordinates and integer indexes respectively) L8.cube[list(left=388941.2 + 1e5, right=766552.4 - 1e5, bottom=4345299 + 1e5, top=4744931 - 1e5)] L8.cube[,,c(1,100), c(1,100)] L8.cube[,c(1,2),,] # crop by time (integer indexes) # subset by spatial point or bounding box if (requireNamespace("sf", quietly = TRUE)) { s = sf::st_sfc(sf::st_point(c(500000, 4500000)), crs = "EPSG:32618") L8.cube[s] bbox = sf::st_bbox(c(xmin = 388941.2 + 1e5, xmax = 766552.4 - 1e5, ymax = 4744931 - 1e5, ymin = 4345299 + 1e5), crs = sf::st_crs(32618)) L8.cube[bbox] }
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"), srs="EPSG:32618", nx = 497, ny=526, dt="P3M", aggregation = "median") L8.cube = raster_cube(L8.col, v, mask=image_mask("BQA", bits=4, values=16)) L8.red = L8.cube$B04 plot(L8.red) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01-01", t1="2018-12-31"), srs="EPSG:32618", nx = 497, ny=526, dt="P1D", aggregation = "median") L8.cube = raster_cube(L8.col, v, mask=image_mask("BQA", bits=4, values=16)) L8.cube[c("B05","B04")] # select bands L8.cube[as.Date(c("2018-01-10", "2018-01-20"))] # crop by time L8.cube[as.Date("2018-01-10")] # slice by time L8.cube["B05", "2018-01-10"] # select bands and slice by time L8.cube["B05", c("2018-01-10","2018-01-17")] # select bands and crop by time L8.cube[, c("2018-01-10","2018-01-17")] # crop by time # crop by space (coordinates and integer indexes respectively) L8.cube[list(left=388941.2 + 1e5, right=766552.4 - 1e5, bottom=4345299 + 1e5, top=4744931 - 1e5)] L8.cube[,,c(1,100), c(1,100)] L8.cube[,c(1,2),,] # crop by time (integer indexes) # subset by spatial point or bounding box if (requireNamespace("sf", quietly = TRUE)) { s = sf::st_sfc(sf::st_point(c(500000, 4500000)), crs = "EPSG:32618") L8.cube[s] bbox = sf::st_bbox(c(xmin = 388941.2 + 1e5, xmax = 766552.4 - 1e5, ymax = 4744931 - 1e5, ymin = 4345299 + 1e5), crs = sf::st_crs(32618)) L8.cube[bbox] }
Set GDAL config options
gdalcubes_set_gdal_config(key, value)
gdalcubes_set_gdal_config(key, value)
key |
name of a GDAL config option to be set |
value |
value |
Details and a list of possible options can be found at https://gdal.org/user/configoptions.html.
gdalcubes_set_gdal_config("GDAL_NUM_THREADS", "ALL_CPUS")
gdalcubes_set_gdal_config("GDAL_NUM_THREADS", "ALL_CPUS")
This function will load an image collection from an SQLite file. Image collection files
index and reference existing imagery. To create a collection from files on disk,
use create_image_collection
.
image_collection(path)
image_collection(path)
path |
path to an existing image collection file |
an image collection proxy object, which can be used to create a data cube using raster_cube
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) L8.col
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) L8.col
Create an image mask based on a band and provided values to filter pixels of images
read by raster_cube
image_mask( band, min = NULL, max = NULL, values = NULL, bits = NULL, invert = FALSE )
image_mask( band, min = NULL, max = NULL, values = NULL, bits = NULL, invert = FALSE )
band |
name of the mask band |
min |
minimum value, values between |
max |
maximum value, values between |
values |
numeric vector; specific values that will be masked. |
bits |
for bitmasks, extract the given bits (integer vector) with a bitwise AND before filtering the mask values, bit indexes are zero-based |
invert |
logical; invert mask |
Values of the selected mask band can be based on a range (by passing min
and max
) or on a set of values (by passing values
). By default
pixels with mask values contained in the range or in the values are masked out, i.e. set to NA. Setting invert = TRUE
will invert the masking behavior.
Passing values
will override min
and max
.
Notice that masks are applied per image while reading images as a raster cube. They can be useful to eliminate e.g. cloudy pixels before applying the temporal aggregation to merge multiple values for the same data cube pixel.
image_mask("SCL", values = c(3,8,9)) # Sentinel 2 L2A: mask cloud and cloud shadows image_mask("BQA", bits=4, values=16) # Landsat 8: mask clouds image_mask("B10", min = 8000, max=65000)
image_mask("SCL", values = c(3,8,9)) # Sentinel 2 L2A: mask cloud and cloud shadows image_mask("BQA", bits=4, values=16) # Landsat 8: mask clouds image_mask("B10", min = 8000, max=65000)
Create a proxy data cube, which joins the bands of two identically shaped data cubes. The resulting cube will have bands from both input cubes.
join_bands(cube_list, cube_names = NULL)
join_bands(cube_list, cube_names = NULL)
cube_list |
a list with two or more source data cubes |
cube_names |
list or character vector with optional name prefixes for bands in the output data cube (see Details) |
The number of provided cube_names must match the number of provided input cubes. If no cube_names are provided, bands of the output cube will adopt original names from the input cubes (without any prefix). If any two of the input bands have identical names, prefixes default prefixes ("X1", "X2", ...) will be used.
proxy data cube object
This function returns a proxy object, i.e., it will not start any computations besides deriving the shape of the result.
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-05"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") L8.cube = raster_cube(L8.col, v) L8.cube.b04 = select_bands(raster_cube(L8.col, v), c("B04")) L8.cube.b05 = select_bands(raster_cube(L8.col, v), c("B05")) join_bands(list(L8.cube.b04,L8.cube.b05)) plot(join_bands(list(L8.cube.b04,L8.cube.b05)))
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-05"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") L8.cube = raster_cube(L8.col, v) L8.cube.b04 = select_bands(raster_cube(L8.col, v), c("B04")) L8.cube.b05 = select_bands(raster_cube(L8.col, v), c("B05")) join_bands(list(L8.cube.b04,L8.cube.b05)) plot(join_bands(list(L8.cube.b04,L8.cube.b05)))
Read a data cube from a json description file
json_cube(json, path = NULL)
json_cube(json, path = NULL)
json |
length-one character vector with a valid json data cube description |
path |
source data cube proxy object |
Data cubes can be stored as JSON description files. These files do not store any data but the recipe how a data cube is constructed, i.e., the chain (or graph) of processes involved.
Since data cube objects (as returned from raster_cube
) cannot be saved with normal R methods,
the combination of as_json
and json_cube
provides a cheap way to save virtual
data cube objects across several R sessions, as in the examples.
data cube proxy object
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") cube = raster_cube(L8.col, v) # save fname = tempfile() as_json(cube, fname) # load json_cube(path = fname)
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") cube = raster_cube(L8.col, v) # save fname = tempfile() as_json(cube, fname) # load json_cube(path = fname)
Query data cube properties
memsize(obj, unit = "MiB")
memsize(obj, unit = "MiB")
obj |
a data cube proxy object (class cube) |
unit |
Unit of data size, can be "B", "KB", "KiB", "MB", "MiB", "GB", "GiB", "TB", "TiB", "PB", "PiB" |
Total data size of data cube values expressed in the given unit
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") memsize(raster_cube(L8.col, v))
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") memsize(raster_cube(L8.col, v))
Query data cube properties
## S3 method for class 'cube' names(x)
## S3 method for class 'cube' names(x)
x |
a data cube proxy object (class cube) |
Band names as character vector
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") names(raster_cube(L8.col, v))
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") names(raster_cube(L8.col, v))
Query data cube properties
nbands(obj)
nbands(obj)
obj |
a data cube proxy object (class cube) |
Number of bands
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") nbands(raster_cube(L8.col, v))
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") nbands(raster_cube(L8.col, v))
Create a proxy data cube from a netCDF file that has been created using write_ncdf
.
This function does not read cubes from arbitrary netCDF files and can be used e.g., to load intermediate results and/or
plotting existing netCDF cubes on disk without doing the data cube creation from image collections.
ncdf_cube(path, chunking = NULL, auto_unpack = TRUE)
ncdf_cube(path, chunking = NULL, auto_unpack = TRUE)
path |
path to an existing netCDF file |
chunking |
custom chunk sizes to read form the netCDF file; defaults to using chunk sizes from the netCDF file |
auto_unpack |
logical; automatically apply offset and scale when reading data values |
a proxy data cube object
This function returns a proxy object, i.e., it will not start any computations besides deriving the shape of the result.
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") ncfile = write_ncdf(select_bands(raster_cube(L8.col, v), c("B02", "B03", "B04"))) ncdf_cube(ncfile)
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") ncfile = write_ncdf(select_bands(raster_cube(L8.col, v), c("B02", "B03", "B04"))) ncdf_cube(ncfile)
Query data cube properties
nt(obj)
nt(obj)
obj |
a data cube proxy object (class cube) |
Number of pixels in the time dimension
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") nt(raster_cube(L8.col, v))
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") nt(raster_cube(L8.col, v))
Query data cube properties
nx(obj)
nx(obj)
obj |
a data cube proxy object (class cube) |
Number of pixels in the x dimension
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") nx(raster_cube(L8.col, v))
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") nx(raster_cube(L8.col, v))
Query data cube properties
ny(obj)
ny(obj)
obj |
a data cube proxy object (class cube) |
Number of pixels in the y dimension
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") ny(raster_cube(L8.col, v))
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") ny(raster_cube(L8.col, v))
This function can be used to define packed exports in write_ncdf
and write_tif
. It will generate scale and offset values with maximum precision (unless simplify=TRUE).
pack_minmax(type = "int16", min, max, simplify = FALSE)
pack_minmax(type = "int16", min, max, simplify = FALSE)
type |
target data type of packed values (one of "uint8", "uint16", "uint32", "int16", or "int32") |
min |
numeric; minimum value(s) of original values, will be packed to the 2nd lowest value of the target data type |
max |
numeric; maximum value(s) in original scale, will be packed to the highest value of the target data type |
simplify |
logical; round resulting scale and offset to power of 10 values |
Nodata values will be mapped to the lowest value of the target data type.
Arguments min and max must have length 1 or length equal to the number of bands of the data cube to be exported. In the former case, the same values are used for all bands of the exported target cube, whereas the latter case allows to use different ranges for different bands.
Using simplify=TRUE will round scale values to the next smaller power of 10.
ndvi_packing = pack_minmax(type="int16", min=-1, max=1) ndvi_packing
ndvi_packing = pack_minmax(type="int16", min=-1, max=1) ndvi_packing
Plot a gdalcubes data cube
## S3 method for class 'cube' plot( x, y, ..., nbreaks = 11, breaks = NULL, col = grey(1:(nbreaks - 1)/nbreaks), key.pos = NULL, bands = NULL, t = NULL, rgb = NULL, zlim = NULL, gamma = 1, periods.in.title = TRUE, join.timeseries = FALSE, axes = TRUE, ncol = NULL, nrow = NULL, downsample = TRUE, na.color = "#AAAAAA" )
## S3 method for class 'cube' plot( x, y, ..., nbreaks = 11, breaks = NULL, col = grey(1:(nbreaks - 1)/nbreaks), key.pos = NULL, bands = NULL, t = NULL, rgb = NULL, zlim = NULL, gamma = 1, periods.in.title = TRUE, join.timeseries = FALSE, axes = TRUE, ncol = NULL, nrow = NULL, downsample = TRUE, na.color = "#AAAAAA" )
x |
a data cube proxy object (class cube) |
y |
__not used__ |
... |
further arguments passed to |
nbreaks |
number of breaks, should be one more than the number of colors given |
breaks |
actual breaks used to assign colors to values; if missing, the function subsamples values and uses equally sized intervals between min and max or zlim[0] and zlim[1] if defined |
col |
color definition, can be a character vector with nbreaks - 1 elements or a function such as |
key.pos |
position for the legend, 1 (bottom), 2 (left), 3 (top), or 4 (right). If NULL (the default), do not plot a legend. |
bands |
integer vector with band numbers to plot (this must be band numbers, not band names) |
t |
integer vector with time indexes to plot (this must be time indexes, not date / time) |
rgb |
bands used to assign RGB color channels, vector of length 3 (this must be band numbers, not band names) |
zlim |
vector of length 2, defining the minimum and maximum values to either derive breaks, or define black and white values in RGB plots |
gamma |
gamma correction value, used for RGB plots only |
periods.in.title |
logical value, if TRUE, the title of plots includes the datetime period length as ISO 8601 string |
join.timeseries |
logical, for pure time-series plots, shall time series of multiple bands be plotted in a single plot (with different colors)? |
axes |
logical, if TRUE, plots include axes |
ncol |
number of columns for arranging plots with |
nrow |
number of rows for arranging plots with |
downsample |
length-one integer or logical value used to select only every i-th pixel (in space only) for faster plots; by default (TRUE), downsampling will be determined automatically based on the resolution of the graphics device; set to FALSE to avoid downsampling. |
na.color |
color used to plot NA pixels |
The style of the plot depends on provided parameters and on the shape of the cube, i.e., whether it is a pure time series and whether it contains multiple bands or not.
Multi-band, multi-temporal images will be arranged with layout()
such that bands are represented by columns and time is represented by rows.
Time series plots can be combined to a single plot by setting join.timeseries = TRUE
. The layout can be controlled with ncol
and nrow
, which define the number of rows and columns in the plot layout. Typically, only one of
ncol
and nrow
is provided. For multi-band, multi-temporal plots, the actual number of rows or columns can be less if the input cube has less bands or time slices.
The downsample
argument is used to speed-up plotting if the cube has much more pixels than the graphics device.
If set to a scalar integer value > 1, the value is used to skip pixels in the spatial dimensions. For example, setting downsample = 4
means
that every fourth pixel is used in the spatial dimensions. If TRUE (the default) downsample
is derived automatically based on the
sizes of the cube and the graphics device. If 1 or FALSE, no additional downsampling is performed. Notice that downsampling is only used for plotting.
The size of the data cube (and hence the computation time to process the data cube) is not modified.
If caching is enabled for the package (see gdalcubes_options
), repeated calls of plot
for the same data cube will not reevaluate the cube. Instead, the temporary result file will be reused, if possible.
Some parts of the function have been copied from the stars package (c) Edzer Pebesma
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") plot(select_bands(raster_cube(L8.col, v), c("B02", "B03", "B04")), rgb=3:1) L8.cube = select_bands(raster_cube(L8.col, v), c("B04", "B05")) L8.ndvi = apply_pixel(L8.cube, "(B05-B04)/(B05+B04)", "NDVI") plot(reduce_time(L8.ndvi, "median(NDVI)"), key.pos=1, zlim=c(0,1))
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") plot(select_bands(raster_cube(L8.col, v), c("B02", "B03", "B04")), rgb=3:1) L8.cube = select_bands(raster_cube(L8.col, v), c("B04", "B05")) L8.ndvi = apply_pixel(L8.cube, "(B05-B04)/(B05+B04)", "NDVI") plot(reduce_time(L8.ndvi, "median(NDVI)"), key.pos=1, zlim=c(0,1))
Apply a trained model on all pixels of a data cube.
## S3 method for class 'cube' predict(object, model, ..., output_names = c("pred"), keep_bands = FALSE)
## S3 method for class 'cube' predict(object, model, ..., output_names = c("pred"), keep_bands = FALSE)
object |
a data cube proxy object (class cube) |
model |
model used for prediction (e.g. from |
... |
further arguments passed to the model-specific predict method |
output_names |
optional character vector for output variable(s) |
keep_bands |
logical; keep bands of input data cube, defaults to FALSE, i.e. original bands will be dropped |
The model-specific predict method will be automatically chosen based on the class of the provided model. It aims at supporting
models from the packages tidymodels
, caret
, and simple models as from lm
or glm
.
For multiple output variables or output in form of lists or data.frames, output_names
must be provided and match
names of the columns / items of the result object returned from the underlying predict method. For example,
predictions using tidymodels
return a tibble (data.frame) with columns like .pred_class
(classification case).
This must be explicitly provided as output_names
. Similarly, predict.lm
and the like return lists
if the standard error is requested by the user and output_names
hence should be set to c("fit","se.fit")
.
For more complex cases or when predict expects something else than a data.frame
, this function may not work at all.
This function returns a proxy object, i.e., it will not immediately start any computations.
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P3M") L8.col = image_collection(file.path(tempdir(), "L8.db")) x = sf::st_read(system.file("ny_samples.gpkg", package = "gdalcubes")) raster_cube(L8.col, v) |> select_bands(c("B02","B03","B04","B05")) |> extract_geom(x) -> train x$FID = rownames(x) train = merge(train, x, by = "FID") train$iswater = as.factor(train$class == "water") log_model <- glm(iswater ~ B02 + B03 + B04 + B05, data = train, family = "binomial") raster_cube(L8.col, v) |> select_bands(c("B02","B03","B04","B05")) |> predict(model=log_model, type="response") |> plot(key.pos=1)
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P3M") L8.col = image_collection(file.path(tempdir(), "L8.db")) x = sf::st_read(system.file("ny_samples.gpkg", package = "gdalcubes")) raster_cube(L8.col, v) |> select_bands(c("B02","B03","B04","B05")) |> extract_geom(x) -> train x$FID = rownames(x) train = merge(train, x, by = "FID") train$iswater = as.factor(train$class == "water") log_model <- glm(iswater ~ B02 + B03 + B04 + B05, data = train, family = "binomial") raster_cube(L8.col, v) |> select_bands(c("B02","B03","B04","B05")) |> predict(model=log_model, type="response") |> plot(key.pos=1)
Prints information about the dimensions and bands of a data cube.
## S3 method for class 'cube' print(x, ...)
## S3 method for class 'cube' print(x, ...)
x |
Object of class "cube" |
... |
Further arguments passed to the generic print function |
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") print(raster_cube(L8.col, v))
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") print(raster_cube(L8.col, v))
Prints information about a data cube view, including its dimensions, spatial reference, aggregation method, and resampling method.
## S3 method for class 'cube_view' print(x, ...)
## S3 method for class 'cube_view' print(x, ...)
x |
Object of class "cube_view" |
... |
Further arguments passed to the generic print function |
v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") print(v)
v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") print(v)
Prints information about images in an image collection.
## S3 method for class 'image_collection' print(x, ..., n = 6)
## S3 method for class 'image_collection' print(x, ..., n = 6)
x |
Object of class "image_collection" |
... |
Further arguments passed to the generic print function |
n |
Number of images for which details are printed |
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) print(L8.col)
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) print(L8.col)
Query data cube properties
proj4(obj)
proj4(obj)
obj |
a data cube proxy object (class cube) |
The spatial reference system expressed as proj4 string
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") proj4(raster_cube(L8.col, v))
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") proj4(raster_cube(L8.col, v))
Create a proxy data cube, which loads data from a given image collection according to a data cube view
raster_cube( image_collection, view, mask = NULL, chunking = .pkgenv$default_chunksize, incomplete_ok = TRUE )
raster_cube( image_collection, view, mask = NULL, chunking = .pkgenv$default_chunksize, incomplete_ok = TRUE )
image_collection |
Source image collection as from |
view |
A data cube view defining the shape (spatiotemporal extent, resolution, and spatial reference), if missing, a default overview is used |
mask |
mask pixels of images based on band values, see |
chunking |
length-3 vector or a function returning a vector of length 3, defining the size of data cube chunks in the order time, y, x. |
incomplete_ok |
logical, if TRUE (the default), chunks will ignore IO failures and simply use as much images as possible, otherwise the result will contain empty chunks if IO errors or similar occur. |
The following steps will be performed when the data cube is requested to read data of a chunk:
1. Find images from the input collection that intersect with the spatiotemporal extent of the chunk 2. For all resulting images, apply gdalwarp to reproject, resize, and resample to an in-memory GDAL dataset 3. Read the resulting data to the chunk buffer and optionally apply a mask on the result 4. Update pixel-wise aggregator (as defined in the data cube view) to combine values of multiple images within the same data cube pixels
If chunking is provided as a function, it must accept exactly three arguments for the total size of the cube in t, y, and x axes (in this order).
A proxy data cube object
This function returns a proxy object, i.e., it will not start any computations besides deriving the shape of the result.
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") raster_cube(L8.col, v) # using a mask on the Landsat quality bit band to filter out clouds raster_cube(L8.col, v, mask=image_mask("BQA", bits=4, values=16))
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") raster_cube(L8.col, v) # using a mask on the Landsat quality bit band to filter out clouds raster_cube(L8.col, v, mask=image_mask("BQA", bits=4, values=16))
This function can be used within function passed to chunk_apply
in order to read a data cube chunk as a four-dimensional R array.
It works only for R processes, which have been started from the gdalcubes C++ library.
The resulting array has dimensions band, time, y, x (in this order).
read_chunk_as_array(with.dimnames = TRUE)
read_chunk_as_array(with.dimnames = TRUE)
with.dimnames |
if TRUE, the resulting array will contain dimnames with coordinates, datetime, and band names |
four-dimensional array
Call this function ONLY from a function passed to chunk_apply
.
This function only works in R sessions started from gdalcubes streaming.
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") L8.cube = raster_cube(L8.col, v) L8.cube = select_bands(L8.cube, c("B04", "B05")) f <- function() { x <- read_chunk_as_array() out <- reduce_time(x, function(x) { cor(x[1,], x[2,], use="na.or.complete", method = "kendall") }) write_chunk_from_array(out) } L8.cor = chunk_apply(L8.cube, f) plot(L8.cor, zlim=c(0,1), key.pos=1)
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") L8.cube = raster_cube(L8.col, v) L8.cube = select_bands(L8.cube, c("B04", "B05")) f <- function() { x <- read_chunk_as_array() out <- reduce_time(x, function(x) { cor(x[1,], x[2,], use="na.or.complete", method = "kendall") }) write_chunk_from_array(out) } L8.cor = chunk_apply(L8.cube, f) plot(L8.cor, zlim=c(0,1), key.pos=1)
This generic function applies a reducer function over a data cube, an R array, or other classes if implemented.
reduce_space(x, ...)
reduce_space(x, ...)
x |
object to be reduced |
... |
further arguments passed to specific implementations |
return value and type depend on the class of x
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") reduce_space(raster_cube(L8.col, v) , "median(B02)") d <- c(4,16,32,32) x <- array(rnorm(prod(d)), d) y <- reduce_space(x, function(v) { apply(v, 1, mean) })
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") reduce_space(raster_cube(L8.col, v) , "median(B02)") d <- c(4,16,32,32) x <- array(rnorm(prod(d)), d) y <- reduce_space(x, function(v) { apply(v, 1, mean) })
Apply a function over space and bands in a four-dimensional (band, time, y, x) array and reduce spatial dimensions
## S3 method for class 'array' reduce_space(x, FUN, ...)
## S3 method for class 'array' reduce_space(x, FUN, ...)
x |
four-dimensional input array with dimensions band, time, y, x (in this order) |
FUN |
function which receives one spatial slice in a three-dimensional array with dimensions bands, y, x as input |
... |
further arguments passed to FUN |
FUN is expected to produce a numeric vector (or scalar) where elements are interpreted as new bands in the result.
This is a helper function that uses the same dimension ordering as gdalcubes streaming. It can be used to simplify the application of R functions e.g. over spatial slices in a data cube.
d <- c(4,16,32,32) x <- array(rnorm(prod(d)), d) # reduce individual bands over spatial slices y <- reduce_space(x, function(v) { apply(v, 1, mean) }) dim(y)
d <- c(4,16,32,32) x <- array(rnorm(prod(d)), d) # reduce individual bands over spatial slices y <- reduce_space(x, function(v) { apply(v, 1, mean) }) dim(y)
Create a proxy data cube, which applies one or more reducer functions to selected bands over spatial slices of a data cube
## S3 method for class 'cube' reduce_space( x, expr, ..., FUN, names = NULL, load_pkgs = FALSE, load_env = FALSE )
## S3 method for class 'cube' reduce_space( x, expr, ..., FUN, names = NULL, load_pkgs = FALSE, load_env = FALSE )
x |
source data cube |
expr |
either a single string, or a vector of strings defining which reducers will be applied over which bands of the input cube |
... |
optional additional expressions (if |
FUN |
a user-defined R function applied over pixel time series (see Details) |
names |
character vector; names of the output bands, if FUN is provided, the length of names is used as the expected number of output bands |
load_pkgs |
logical or character; if TRUE, all currently attached packages will be attached automatically before executing FUN in spawned R processes, specific packages can alternatively be provided as a character vector. |
load_env |
logical or environment; if TRUE, the current global environment will be restored automatically before executing FUN in spawned R processes, can be set to a custom environment. |
Notice that expressions have a very simple format: the reducer is followed by the name of a band in parentheses. You cannot add more complex functions or arguments.
Possible reducers currently include "min", "max", "sum", "prod", "count", "mean", "median", "var", and "sd".
For more details and examples on how to write user-defined functions, please refer to the gdalcubes website at https://gdalcubes.github.io/source/concepts/udfs.html.
proxy data cube object
Implemented reducers will ignore any NAN values (as na.rm=TRUE does).
This function returns a proxy object, i.e., it will not start any computations besides deriving the shape of the result.
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") L8.cube = raster_cube(L8.col, v) L8.b02 = select_bands(L8.cube, c("B02")) L8.b02.median = reduce_space(L8.b02, "median(B02)") L8.b02.median plot(L8.b02.median)
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") L8.cube = raster_cube(L8.col, v) L8.b02 = select_bands(L8.cube, c("B02")) L8.b02.median = reduce_space(L8.b02, "median(B02)") L8.b02.median plot(L8.b02.median)
This generic function applies a reducer function over a data cube, an R array, or other classes if implemented.
reduce_time(x, ...)
reduce_time(x, ...)
x |
object to be reduced |
... |
further arguments passed to specific implementations |
return value and type depend on the class of x
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") reduce_time(raster_cube(L8.col, v) , "median(B02)", "median(B03)", "median(B04)") d <- c(4,16,32,32) x <- array(rnorm(prod(d)), d) y <- reduce_time(x, function(v) { apply(v, 1, mean) })
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") reduce_time(raster_cube(L8.col, v) , "median(B02)", "median(B03)", "median(B04)") d <- c(4,16,32,32) x <- array(rnorm(prod(d)), d) y <- reduce_time(x, function(v) { apply(v, 1, mean) })
Apply a function over time and bands in a four-dimensional (band, time, y, x) array and reduce time dimension
## S3 method for class 'array' reduce_time(x, FUN, ...)
## S3 method for class 'array' reduce_time(x, FUN, ...)
x |
four-dimensional input array with dimensions band, time, y, x (in this order) |
FUN |
function which receives one time series in a two-dimensional array with dimensions bands, time as input |
... |
further arguments passed to FUN |
FUN is expected to produce a numeric vector (or scalar) where elements are interpreted as new bands in the result.
This is a helper function that uses the same dimension ordering as gdalcubes streaming. It can be used to simplify the application of R functions e.g. over time series in a data cube.
d <- c(4,16,32,32) x <- array(rnorm(prod(d)), d) # reduce individual bands over pixel time series y <- reduce_time(x, function(v) { apply(v, 1, mean) }) dim(y)
d <- c(4,16,32,32) x <- array(rnorm(prod(d)), d) # reduce individual bands over pixel time series y <- reduce_time(x, function(v) { apply(v, 1, mean) }) dim(y)
Create a proxy data cube, which applies one or more reducer functions to selected bands over pixel time series of a data cube
## S3 method for class 'cube' reduce_time( x, expr, ..., FUN, names = NULL, load_pkgs = FALSE, load_env = FALSE )
## S3 method for class 'cube' reduce_time( x, expr, ..., FUN, names = NULL, load_pkgs = FALSE, load_env = FALSE )
x |
source data cube |
expr |
either a single string, or a vector of strings defining which reducers will be applied over which bands of the input cube |
... |
optional additional expressions (if |
FUN |
a user-defined R function applied over pixel time series (see Details) |
names |
character vector; names of the output bands, if FUN is provided, the length of names is used as the expected number of output bands |
load_pkgs |
logical or character; if TRUE, all currently attached packages will be attached automatically before executing FUN in spawned R processes, specific packages can alternatively be provided as a character vector. |
load_env |
logical or environment; if TRUE, the current global environment will be restored automatically before executing FUN in spawned R processes, can be set to a custom environment. |
The function can either apply a built-in reducer if expr is given, or apply a custom R reducer function if FUN is provided.
In the former case, notice that expressions have a very simple format: the reducer is followed by the name of a band in parantheses. You cannot add more complex functions or arguments. Possible reducers currently are "min", "max", "sum", "prod", "count", "mean", "median", "var", "sd", "which_min", "which_max", "Q1" (1st quartile), and "Q3" (3rd quartile).
User-defined R reducer functions receive a two-dimensional array as input where rows correspond to the band and columns represent the time dimension. For example, one row is the time series of a specific band. FUN should always return a numeric vector with the same number of elements, which will be interpreted as bands in the result cube. Notice that it is recommended to specify the names of the output bands as a character vector. If names are missing, the number and names of output bands is tried to be derived automatically, which may fail in some cases.
For more details and examples on how to write user-defined functions, please refer to the gdalcubes website at https://gdalcubes.github.io/source/concepts/udfs.html.
proxy data cube object
Implemented reducers will ignore any NAN values (as na.rm=TRUE does)
This function returns a proxy object, i.e., it will not start any computations besides deriving the shape of the result.
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") L8.cube = raster_cube(L8.col, v) L8.rgb = select_bands(L8.cube, c("B02", "B03", "B04")) L8.rgb.median = reduce_time(L8.rgb, "median(B02)", "median(B03)", "median(B04)") L8.rgb.median plot(L8.rgb.median, rgb=3:1) # user defined reducer calculating interquartile ranges L8.rgb.iqr = reduce_time(L8.rgb, names=c("iqr_R", "iqr_G","iqr_B"), FUN = function(x) { c(diff(quantile(x["B04",],c(0.25,0.75), na.rm=TRUE)), diff(quantile(x["B03",],c(0.25,0.75), na.rm=TRUE)), diff(quantile(x["B02",],c(0.25,0.75), na.rm=TRUE))) }) L8.rgb.iqr plot(L8.rgb.iqr, key.pos=1)
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") L8.cube = raster_cube(L8.col, v) L8.rgb = select_bands(L8.cube, c("B02", "B03", "B04")) L8.rgb.median = reduce_time(L8.rgb, "median(B02)", "median(B03)", "median(B04)") L8.rgb.median plot(L8.rgb.median, rgb=3:1) # user defined reducer calculating interquartile ranges L8.rgb.iqr = reduce_time(L8.rgb, names=c("iqr_R", "iqr_G","iqr_B"), FUN = function(x) { c(diff(quantile(x["B04",],c(0.25,0.75), na.rm=TRUE)), diff(quantile(x["B03",],c(0.25,0.75), na.rm=TRUE)), diff(quantile(x["B02",],c(0.25,0.75), na.rm=TRUE))) }) L8.rgb.iqr plot(L8.rgb.iqr, key.pos=1)
Create a proxy data cube, which renames specific bands of a data cube.
rename_bands(cube, ...)
rename_bands(cube, ...)
cube |
source data cube |
... |
named arguments with bands that will be renamed, see Details |
The result data cube always contains the same number of bands. No subsetting is done if only names for some of the bands are provided. In this case, only provided bands are renamed whereas other bands keep their original name. Variable arguments must be named by the old band name and the new names must be provided as simple character values (see example).
proxy data cube object
This function returns a proxy object, i.e., it will not start any computations besides deriving the shape of the result.
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-07"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") L8.cube = raster_cube(L8.col, v) L8.rgb = select_bands(L8.cube, c("B02", "B03", "B04")) L8.rgb L8.rgb = rename_bands(L8.cube, B02 = "blue", B03 = "green", B04 = "red") L8.rgb
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-07"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") L8.cube = raster_cube(L8.col, v) L8.rgb = select_bands(L8.cube, c("B02", "B03", "B04")) L8.rgb L8.rgb = rename_bands(L8.cube, B02 = "blue", B03 = "green", B04 = "red") L8.rgb
Create a proxy data cube, which selects specific bands of a data cube. The resulting cube will drop any other bands.
select_bands(cube, bands)
select_bands(cube, bands)
cube |
source data cube |
bands |
character vector with band names |
proxy data cube object
This function returns a proxy object, i.e., it will not start any computations besides deriving the shape of the result.
For performance reasons, select_bands
should always be called directly on a cube created with raster_cube
and
drop all unneded bands. This allows to reduce RasterIO and warp operations in GDAL.
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-07"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") L8.cube = raster_cube(L8.col, v) L8.rgb = select_bands(L8.cube, c("B02", "B03", "B04")) L8.rgb plot(L8.rgb, rgb=3:1)
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-07"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") L8.cube = raster_cube(L8.col, v) L8.rgb = select_bands(L8.cube, c("B02", "B03", "B04")) L8.rgb plot(L8.rgb, rgb=3:1)
Create a proxy data cube, which selects specific time slices of a data cube. The time dimension of the resulting cube will be irregular / labeled.
select_time(cube, t)
select_time(cube, t)
cube |
source data cube |
t |
character vector with date/time |
proxy data cube object
This function returns a proxy object, i.e., it will not start any computations besides deriving the shape of the result.
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-07"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") L8.cube = raster_cube(L8.col, v) L8.rgb = select_bands(L8.cube, c("B02", "B03", "B04")) L8.rgb = select_time(L8.rgb, c("2018-04", "2018-07")) L8.rgb plot(L8.rgb, rgb=3:1)
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-07"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") L8.cube = raster_cube(L8.col, v) L8.rgb = select_bands(L8.cube, c("B02", "B03", "B04")) L8.rgb = select_time(L8.rgb, c("2018-04", "2018-07")) L8.rgb plot(L8.rgb, rgb=3:1)
Query data cube properties
size(obj)
size(obj)
obj |
a data cube proxy object (class cube) |
size of a data cube (number of cells) as integer vector in the order t, y, x
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") size(raster_cube(L8.col, v))
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") size(raster_cube(L8.col, v))
Create a proxy data cube, which extracts a time series from a data cube defined by spatial coordinates or integer x and y indexes.
slice_space(cube, loc = NULL, i = NULL)
slice_space(cube, loc = NULL, i = NULL)
cube |
source data cube |
loc |
numeric length-two vector; spatial coordinates (x, y) of the time series, expressed in the coordinate reference system of the source data cube |
i |
integer length-2 vector; indexes (x,y) of the time slice (zero-based) |
Either loc
or i
must be non-NULL. If both arguments are provided, integer indexes i
are ignored.
This function returns a proxy object, i.e., it will not start any computations besides deriving the shape of the result.
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"), srs="EPSG:32618", nx = 497, ny=526, dt="P3M", aggregation = "median") L8.cube = raster_cube(L8.col, v, mask=image_mask("BQA", bits=4, values=16)) L8.rgb = select_bands(L8.cube, c("B02", "B03", "B04")) L8.ts = slice_space(L8.rgb, loc = c(5e05, 4400000)) L8.ts plot(L8.ts, join.timeseries = TRUE)
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"), srs="EPSG:32618", nx = 497, ny=526, dt="P3M", aggregation = "median") L8.cube = raster_cube(L8.col, v, mask=image_mask("BQA", bits=4, values=16)) L8.rgb = select_bands(L8.cube, c("B02", "B03", "B04")) L8.ts = slice_space(L8.rgb, loc = c(5e05, 4400000)) L8.ts plot(L8.ts, join.timeseries = TRUE)
Create a proxy data cube, which extracts a time slice from a data cube defined by label (datetime string) or integer index.
slice_time(cube, datetime = NULL, it = NULL)
slice_time(cube, datetime = NULL, it = NULL)
cube |
source data cube |
datetime |
character; datetime string of the time slice |
it |
integer; index of the time slice (zero-based) |
Either datetime
or it
must be non-NULL. If both arguments are provided, the integer index it
is ignored.
This function returns a proxy object, i.e., it will not start any computations besides deriving the shape of the result.
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M", aggregation = "median") L8.cube = raster_cube(L8.col, v, mask=image_mask("BQA", bits=4, values=16)) L8.rgb = select_bands(L8.cube, c("B02", "B03", "B04")) L8.slice = slice_time(L8.rgb, "2018-03") L8.slice plot(L8.slice, rgb=3:1, zlim=c(5000,12000))
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M", aggregation = "median") L8.cube = raster_cube(L8.col, v, mask=image_mask("BQA", bits=4, values=16)) L8.rgb = select_bands(L8.cube, c("B02", "B03", "B04")) L8.slice = slice_time(L8.rgb, "2018-03") L8.slice plot(L8.slice, rgb=3:1, zlim=c(5000,12000))
Query data cube properties
srs(obj)
srs(obj)
obj |
a data cube proxy object (class cube) |
The spatial reference system expressed as a string readable by GDAL
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") srs(raster_cube(L8.col, v))
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") srs(raster_cube(L8.col, v))
The function materializes a data cube as a temporary netCDF file and loads the file with the stars package.
st_as_stars.cube(.x, ...)
st_as_stars.cube(.x, ...)
.x |
data cube object to coerce |
... |
not used |
stars object
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-04"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") if(require("stars")) st_as_stars(select_bands(raster_cube(L8.col, v), c("B04", "B05")))
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-04"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") if(require("stars")) st_as_stars(select_bands(raster_cube(L8.col, v), c("B04", "B05")))
This function creates an image collection from a STAC API collection response. It does not need to read any image data. Additionally, bands can be filtered and asset links can be transformed to make them readable for GDAL.
stac_image_collection( s, out_file = tempfile(fileext = ".db"), asset_names = NULL, asset_regex = NULL, url_fun = .default_url_fun, property_filter = NULL, skip_image_metadata = FALSE, srs = NULL, srs_overwrite = FALSE, duration = c("center", "start") )
stac_image_collection( s, out_file = tempfile(fileext = ".db"), asset_names = NULL, asset_regex = NULL, url_fun = .default_url_fun, property_filter = NULL, skip_image_metadata = FALSE, srs = NULL, srs_overwrite = FALSE, duration = c("center", "start") )
s |
STAC feature collection |
out_file |
optional name of the output SQLite database file, defaults to a temporary file |
asset_names |
character vector with names of assets (e.g., bands) to be used, other assets will be ignored. By default (NULL), all asset names with "eo:bands" attributes will be used |
asset_regex |
length 1 character defining a regular expression asset names must match to be considered |
url_fun |
optional function to modify URLs of assets, e.g, to add /vsicurl/ to URLS (the default) |
property_filter |
optional function to filter STAC items (images) by their properties; see Details |
skip_image_metadata |
logical, if TRUE per-image metadata (STAC item properties) will not be added to the image collection |
srs |
character spatial reference system of images used either for images without corresponding STAC property ony or for all images |
srs_overwrite |
logical, if FALSE, use srs only for images with unknown srs (missing STAC metadata) |
duration |
character, if images represent time intervals, use either the"start" or "center" of time intervals |
The property_filter argument can be used to filter images by metadata such as cloud coverage. The functions receives all properties of a STAC item (image) as input list and is expected to produce a single logical value, where an image will be ignored if the function returns FALSE.
Some STAC API endpoints may return items with duplicte IDs (image names), pointing to identical URLs. Such items are only added once during creation of the image collection.
Currently, bbox results are expected to be WGS84 coordinates, even if bbox-crs is given in the STAC response.
Create a spatiotemporal data cube directly from images with identical spatial extent and spatial reference system, similar to a raster stack with an additional dimension supporting both, time and multiple bands / variables.
stack_cube( x, datetime_values, bands = NULL, band_names = NULL, chunking = c(1, 256, 256), dx = NULL, dy = NULL, incomplete_ok = TRUE )
stack_cube( x, datetime_values, bands = NULL, band_names = NULL, chunking = c(1, 256, 256), dx = NULL, dy = NULL, incomplete_ok = TRUE )
x |
character vector where items point to image files |
datetime_values |
vector of type character, Date, or POSIXct with recording date of images |
bands |
optional character vector defining the band or spectral band of each item in x, if files relate to different spectral bands or variables |
band_names |
name of bands, only used if bands is NULL, i.e., if all files contain the same spectral band(s) / variable(s) |
chunking |
vector of length 3 defining the size of data cube chunks in the order time, y, x. |
dx |
optional target pixel size in x direction, by default (NULL) the original or highest resolution of images is used |
dy |
optional target pixel size in y direction, by default (NULL) the original or highest resolution of images is used |
incomplete_ok |
logical, if TRUE (the default), chunks will ignore IO failures and simply use as much images as possible, otherwise the result will contain empty chunks if IO errors or similar occur. |
This function creates a four-dimensional (space, time, bands / variables) raster data cube from a set of provided files without the need to create an image collection before. This is possible if all images have the same spatial extent and spatial reference system and can be used for two different file organizations:
1. If all image files share the same bands / variables, the bands
argument can be ignored (default NULL) can
names of the bands can be specified using the band_names
argument.
2. If image files represent different band / variable (e.g. individual files for red, green, and blue channels), the bands
argument must be used to define the corresponding band / variable. Notice that in this case all files are expected to
represent exactly one variable / band at one point in datetime. It is not possible to combine files with different
numbers of variables / bands. If image files for different bands have different pixel sizes, the smallest size is used
by default.
Notice that to avoid opening all image files in advance,no automatic check whether all images share the spatial extent and spatial reference system is performed.
A proxy data cube object
This function returns a proxy object, i.e., it will not start any computations besides deriving the shape of the result.
# toy example, repeating the same image as a daily time series L8_file_nir <- system.file("L8NY18/LC08_L1TP_014032_20181122_20181129_01_T1/LC08_L1TP_014032_20181122_B5.TIF", package = "gdalcubes") files = rep(L8_file_nir, 10) datetime = as.Date("2018-11-22") + 1:10 stack_cube(files, datetime, band_names = "B05") # using a second band from different files L8_file_red <- system.file("L8NY18/LC08_L1TP_014032_20181122_20181129_01_T1/LC08_L1TP_014032_20181122_B4.TIF", package = "gdalcubes") files = rep(c(L8_file_nir, L8_file_red), each = 10) datetime = rep(as.Date("2018-11-22") + 1:10, 2) bands = rep(c("B5","B4"), each = 10) stack_cube(files, datetime, bands = bands)
# toy example, repeating the same image as a daily time series L8_file_nir <- system.file("L8NY18/LC08_L1TP_014032_20181122_20181129_01_T1/LC08_L1TP_014032_20181122_B5.TIF", package = "gdalcubes") files = rep(L8_file_nir, 10) datetime = as.Date("2018-11-22") + 1:10 stack_cube(files, datetime, band_names = "B05") # using a second band from different files L8_file_red <- system.file("L8NY18/LC08_L1TP_014032_20181122_20181129_01_T1/LC08_L1TP_014032_20181122_B4.TIF", package = "gdalcubes") files = rep(c(L8_file_nir, L8_file_red), each = 10) datetime = rep(as.Date("2018-11-22") + 1:10, 2) bands = rep(c("B5","B4"), each = 10) stack_cube(files, datetime, bands = bands)
Create a proxy data cube, which applies a convolution kernel or aggregation functions over two-dimensional moving windows sliding over spatial slices of a data cube. The function can either execute one or more predefined aggregation functions or apply a custom convolution kernel. Among others, use cases include image processing (edge detection, noise reduction, etc.) and enriching pixel values with local neighborhood properties (e.g. to use as predictor variables in ML models).
window_space(x, expr, ..., kernel, window, keep_bands = FALSE, pad = NA)
window_space(x, expr, ..., kernel, window, keep_bands = FALSE, pad = NA)
x |
source data cube |
expr |
either a single string, or a vector of strings, defining which reducers will be applied over which bands of the input cube |
... |
optional additional expressions (if expr is not a vector) |
kernel |
two dimensional kernel (matrix) applied as convolution (with odd number of rows and columns) |
window |
integer vector with two elements defining the size (number of pixels) of the window in y and x direction, the total size of the window is window[1] * window[2] |
keep_bands |
logical; if FALSE (the default), original data cube bands will be dropped. |
pad |
padding method applied to the borders; use NULL for no padding (NA), a numeric a fill value, or one of "REPLICATE", "REFLECT", "REFLECT_PIXEL" |
The function either applies a kernel convolution (if the kernel
argument is provided) or one or more built-in reducer function
over moving windows.
In the former case, the kernel convolution will be applied over all bands of the input cube, i.e., the output cube will have the same number of bands as the input cubes.
To apply one or more aggregation functions over moving windows, the window argument must be provided as a vector with two integer sizes in the order y, x. Several string expressions can be provided to create multiple bands in the output cube. Notice that expressions have a very simple format: the reducer is followed by the name of a band in parentheses, e.g, "mean(band1)". Possible reducers include "min", "max", "sum", "prod", "count", "mean", "median", "var", and "sd".
Padding methods "REPLICATE", "REFLECT", "REFLEX_PIXEL" are defined according to https://openeo.org/documentation/1.0/processes.html#apply_kernel.
proxy data cube object
Implemented reducers will ignore any NAN values (as na.rm = TRUE
does).
Calling this function consecutively many times may result in long computation times depending on chunk and window sizes due to the need to read adjacent data cube chunks.
This function returns a proxy object, i.e., it will not start any computations besides deriving the shape of the result.
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") L8.cube = raster_cube(L8.col, v, chunking = c(1,1000,1000)) L8.cube = select_bands(L8.cube, c("B04", "B05")) L8.cube.mean5x5 = window_space(L8.cube, kernel = matrix(1/25, 5, 5)) L8.cube.mean5x5 plot(L8.cube.mean5x5, key.pos=1) L8.cube.med_sd = window_space(L8.cube, "median(B04)" ,"sd(B04)", "median(B05)", "sd(B05)", window = c(5,5), keep_bands = TRUE) L8.cube.med_sd plot(L8.cube.med_sd, key.pos=1)
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") L8.cube = raster_cube(L8.col, v, chunking = c(1,1000,1000)) L8.cube = select_bands(L8.cube, c("B04", "B05")) L8.cube.mean5x5 = window_space(L8.cube, kernel = matrix(1/25, 5, 5)) L8.cube.mean5x5 plot(L8.cube.mean5x5, key.pos=1) L8.cube.med_sd = window_space(L8.cube, "median(B04)" ,"sd(B04)", "median(B05)", "sd(B05)", window = c(5,5), keep_bands = TRUE) L8.cube.med_sd plot(L8.cube.med_sd, key.pos=1)
Create a proxy data cube, which applies one ore more moving window functions to selected bands over pixel time series of a data cube. The function can either apply a built-in aggregation function or apply a custom one-dimensional convolution kernel.
window_time(x, expr, ..., kernel, window)
window_time(x, expr, ..., kernel, window)
x |
source data cube |
expr |
either a single string, or a vector of strings defining which reducers wlil be applied over which bands of the input cube |
... |
optional additional expressions (if expr is not a vector) |
kernel |
numeric vector with elements of the kernel |
window |
integer vector with two elements defining the size of the window before and after a cell, the total size of the window is window[1] + 1 + window[2] |
The function either applies a kernel convolution (if the kernel
argument is provided) or a general reducer function
over moving temporal windows. In the former case, the kernel convolution will be applied over all bands of the input
cube, i.e., the output cube will have the same number of bands as the input cubes. If a kernel is given and the window
argument is missing,
the window will be symmetric to the center pixel with the size of the provided kernel. For general reducer functions, the window argument must be provided and
several expressions can be used to create multiple bands in the output cube.
Notice that expressions have a very simple format: the reducer is followed by the name of a band in parantheses. You cannot add more complex functions or arguments.
Possible reducers include "min", "max", "sum", "prod", "count", "mean", and "median".
proxy data cube object
Implemented reducers will ignore any NAN values (as na.rm=TRUE does).
This function returns a proxy object, i.e., it will not start any computations besides deriving the shape of the result.
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-07"), srs="EPSG:32618", nx = 400, dt="P1M") L8.cube = raster_cube(L8.col, v) L8.nir = select_bands(L8.cube, c("B05")) L8.nir.min = window_time(L8.nir, window = c(2,2), "min(B05)") L8.nir.min L8.nir.kernel = window_time(L8.nir, kernel=c(-1,1), window=c(1,0)) L8.nir.kernel
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-07"), srs="EPSG:32618", nx = 400, dt="P1M") L8.cube = raster_cube(L8.col, v) L8.nir = select_bands(L8.cube, c("B05")) L8.nir.min = window_time(L8.nir, window = c(2,2), "min(B05)") L8.nir.min L8.nir.kernel = window_time(L8.nir, kernel=c(-1,1), window=c(1,0)) L8.nir.kernel
This function can be used within function passed to chunk_apply
in order to pass four-dimensional R arrays as a
data cube chunk to the gdalcubes C++ library. It works only for R processes, which have been started from the gdalcubes C++ library.
The input array must have dimensions band, time, y, x (in this order).
write_chunk_from_array(v)
write_chunk_from_array(v)
v |
four-dimensional array with dimensions band, time, y, and x |
Call this function ONLY from a function passed to chunk_apply
.
This function only works in R sessions started from gdalcubes streaming.
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") L8.cube = raster_cube(L8.col, v) L8.cube = select_bands(L8.cube, c("B04", "B05")) f <- function() { x <- read_chunk_as_array() out <- reduce_time(x, function(x) { cor(x[1,], x[2,], use="na.or.complete", method = "kendall") }) write_chunk_from_array(out) } L8.cor = chunk_apply(L8.cube, f) plot(L8.cor, zlim=c(0,1), key.pos=1)
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") L8.cube = raster_cube(L8.col, v) L8.cube = select_bands(L8.cube, c("B04", "B05")) f <- function() { x <- read_chunk_as_array() out <- reduce_time(x, function(x) { cor(x[1,], x[2,], use="na.or.complete", method = "kendall") }) write_chunk_from_array(out) } L8.cor = chunk_apply(L8.cube, f) plot(L8.cor, zlim=c(0,1), key.pos=1)
This function will read chunks of a data cube and write them to a single (the default) or multitple (if chunked = TRUE
) netCDF file(s). The resulting
file(s) uses the enhanced netCDF-4 format, supporting chunking and compression.
write_ncdf( x, fname = tempfile(pattern = "gdalcubes", fileext = ".nc"), overwrite = FALSE, write_json_descr = FALSE, with_VRT = FALSE, pack = NULL, chunked = FALSE )
write_ncdf( x, fname = tempfile(pattern = "gdalcubes", fileext = ".nc"), overwrite = FALSE, write_json_descr = FALSE, with_VRT = FALSE, pack = NULL, chunked = FALSE )
x |
a data cube proxy object (class cube) |
fname |
output file name |
overwrite |
logical; overwrite output file if it already exists |
write_json_descr |
logical; write a JSON description of x as additional file |
with_VRT |
logical; write additional VRT datasets (one per time slice) |
pack |
reduce output file size by packing values (see Details), defaults to no packing |
chunked |
logical; if TRUE, write one netCDF file per chunk; defaults to FALSE |
The resulting netCDF file(s) contain three dimensions (t, y, x) and bands as variables.
If write_json_descr
is TRUE, the function will write an addition file with the same name as the NetCDF file but
".json" suffix. This file includes a serialized description of the input data cube, including all chained data cube operations.
To reduce the size of created files, values can be packed by applying a scale factor and an offset value and using a smaller
integer data type for storage (only supported if chunked = TRUE
). The pack
argument can be either NULL (the default), or a list with elements type
, scale
, offset
,
and nodata
. type
can be any of "uint8", "uint16" , "uint32", "int16", or "int32". scale
, offset
, and
nodata
must be numeric vectors with length one or length equal to the number of data cube bands (to use different values for different bands).
The helper function pack_minmax
can be used to derive offset and scale values with maximum precision from minimum and maximum data values on
original scale.
If chunked = TRUE
, names of the produced files will start with name
(with removed extension), followed by an underscore and the internal integer chunk number.
returns (invisibly) the path of the created netCDF file(s)
Packing is currently ignored if chunked = TRUE
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-04"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") write_ncdf(select_bands(raster_cube(L8.col, v), c("B04", "B05")), fname=tempfile(fileext = ".nc"))
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-04"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") write_ncdf(select_bands(raster_cube(L8.col, v), c("B04", "B05")), fname=tempfile(fileext = ".nc"))
This function will time slices of a data cube as GeoTIFF files in a given directory.
write_tif( x, dir = tempfile(pattern = ""), prefix = basename(tempfile(pattern = "cube_")), overviews = FALSE, COG = FALSE, rsmpl_overview = "nearest", creation_options = NULL, write_json_descr = FALSE, pack = NULL )
write_tif( x, dir = tempfile(pattern = ""), prefix = basename(tempfile(pattern = "cube_")), overviews = FALSE, COG = FALSE, rsmpl_overview = "nearest", creation_options = NULL, write_json_descr = FALSE, pack = NULL )
x |
a data cube proxy object (class cube) |
dir |
destination directory |
prefix |
output file name |
overviews |
logical; generate overview images |
COG |
logical; create cloud-optimized GeoTIFF files (forces overviews=TRUE) |
rsmpl_overview |
resampling method for overviews (image pyramid) generation (see https://gdal.org/programs/gdaladdo.html for available methods) |
creation_options |
additional creation options for resulting GeoTIFF files, e.g. to define compression (see https://gdal.org/drivers/raster/gtiff.html#creation-options) |
write_json_descr |
logical; write a JSON description of x as additional file |
pack |
reduce output file size by packing values (see Details), defaults to no packing |
If write_json_descr
is TRUE, the function will write an additional file with name according to prefix (if not missing) or simply cube.json
This file includes a serialized description of the input data cube, including all chained data cube operations.
Additional GDAL creation options for resulting GeoTIFF files must be passed as a named list of simple strings, where element names refer to the key. For example,
creation_options = list("COMPRESS" = "DEFLATE", "ZLEVEL" = "5")
would enable deflate compression at level 5.
To reduce the size of created files, values can be packed by applying a scale factor and an offset value and using a smaller
integer data type for storage. The pack
argument can be either NULL (the default), or a list with elements type
, scale
, offset
,
and nodata
. type
can be any of "uint8", "uint16" , "uint32", "int16", or "int32". scale
, offset
, and
nodata
must be numeric vectors with length one or length equal to the number of data cube bands (to use different values for different bands).
The helper function pack_minmax
can be used to derive offset and scale values with maximum precision from minimum and maximum data values on
original scale.
If overviews=TRUE
, the numbers of pixels are halved until the longer spatial dimensions counts less than 256 pixels.
Setting COG=TRUE
automatically sets overviews=TRUE
.
returns (invisibly) a vector of paths pointing to the created GeoTIFF files
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-04"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") write_tif(select_bands(raster_cube(L8.col, v), c("B04", "B05")), dir=tempdir())
# create image collection from example Landsat data only # if not already done in other examples if (!file.exists(file.path(tempdir(), "L8.db"))) { L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"), ".TIF", recursive = TRUE, full.names = TRUE) create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE) } L8.col = image_collection(file.path(tempdir(), "L8.db")) v = cube_view(extent=list(left=388941.2, right=766552.4, bottom=4345299, top=4744931, t0="2018-04", t1="2018-04"), srs="EPSG:32618", nx = 497, ny=526, dt="P1M") write_tif(select_bands(raster_cube(L8.col, v), c("B04", "B05")), dir=tempdir())